

Optimized Controller for Dairy Cow Cooling Theresa Pistochini, Engineering Manager Western Cooling Efficiency Center

Acknowledgements

This project was funded by California Energy Commission's Electric Program Investment Charge (EPIC) program with support from Southern California Edison

For more information, contact Kadir Bedir at Kadir.Bedir@energy.ca.gov

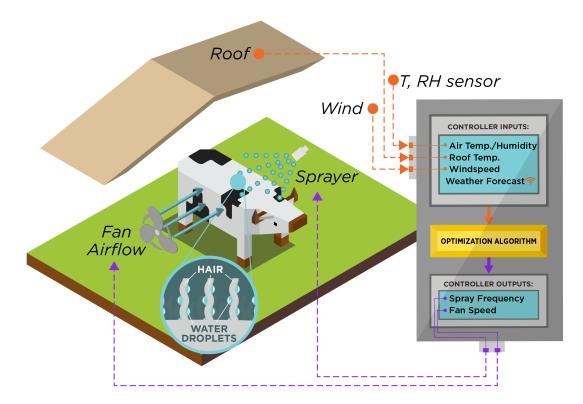
Project Team:

UC Davis WCEC Associate Director Vinod Narayanan, R&D Engineers Elizabeth Chen, Derrick Ross, and Matthew Stevens

UC Davis Animal Science Department Cassandra Tucker and Alycia Drwencke

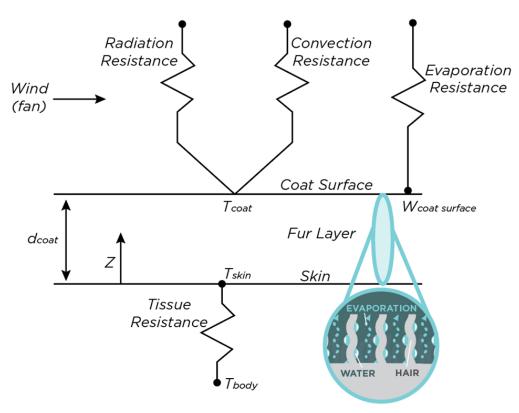
Baseline Scenario

- California has 1.8 million dairy cows
 - Cooling is required to mitigate heat stress which impacts health and milk production
- Typical configuration in a free stall barn (sample of six dairies)
 - Fans turn on to full speed when outdoor air temperatures reach 60 – 78°F
 - Sprayers turn on for ~1 minute cycles when outdoor air temperatures reach 72-85°F. Off times vary between 4 – 9 minutes.



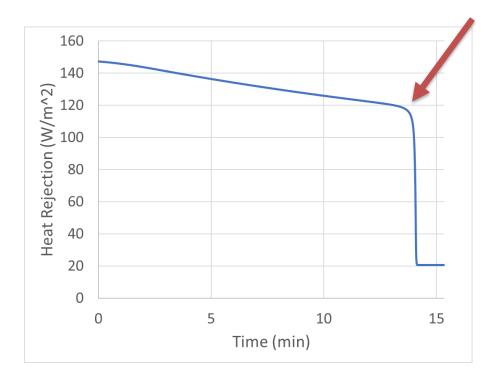
The Problem and Potential

- Existing controllers do not account for the variations in how cooling of the cow is affected by:
 - Ambient temperature
 - Humidity
 - Fan Speed
 - Surrounding surfaces (e.g. roof temperatures).
- Too little cooling heat stress. Too much cooling waste.
- Fan power varies with cube fan speed. A 50% reduction in speed is approximately an 80% reduction in power.
- Excess water use also wastes electricity (for pumping). Excess water may increase incidence of certain diseases.


Controller Overview

Goal: Use real-time weather conditions combined with a control algorithm based on a *heat and transfer model of dairy cow fur drying* to optimize:

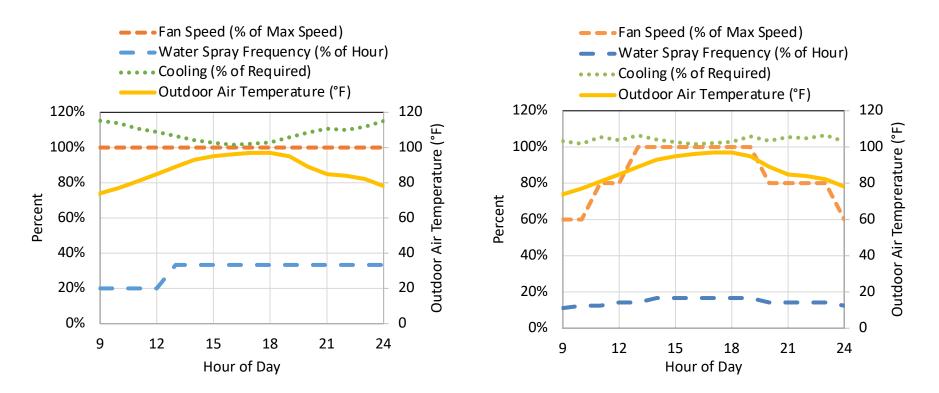
- Water use (sprayers)
- Electricity use (fans)
- Cow health/safety


Model Details

Model estimates fur drying time: used to optimize water spray rate to keep cow fur wet

Model estimates total heat rejection rate: used to set fan speed to meet minimum threshhold

Heat Rejection Rate as Cow Dries


- Environmental conditions:
 - Air temperature 93.2 °F
 - Air speed 3 m/s
 - Humidity 0.01 kg water/kg air
 - Roof temperature 95 °F

Parametric Analysis

Air temperature 93.2 °F Humidity 0.01 kg water/kg air Result changes as outdoor conditions change!

Optimized Controller – Example Day

Annual savings forecast: 20% Electricity Savings, 40% Water Savings

Field Test Summer/Fall 2020

- Dairy located in Tulare County, CA.
- Existing system cools 50 cows. Existing panel fans have been added to VFD.
- Limited to temperature and humidity control. Control based on simplified correlation from model.
- Controls deployed with SMC supervisor (adaptable to a wide variety of control hardware).

Next Steps

- Controls could be implemented in off-the-shelf products
- Industry partner needed to license and deploy controls to dairy industry – expansion of controls company into dairy space?
- Utility program to incentivize commercialization and adoption
- Seeking feedback on technology please share your thoughts!

CASE STUDIES | PRESS ARTICLES | NEWS | HVAC PRESENTATIONS | NEWSLETTER | REPORTS | PUBLICATIONS | INTERVIEWS | RESEARCH | EDUCATION | DEMONSTRATION BRIEFS | OVERVIEW | OUTREACH | MISSION | CONTACT | TECHNICAL SERVICE AGREEMENTS |

wcec.ucdavis.edu

TECHNOLOGY TOPICS | SECTORRESEARCH|BEHAVIORALRESEARCH|SYSTEMSINTEGRATION|CONTROLS|DEMANDSIDEMANAGEMENT|EVAPORATIVETECHNOLOGIESRADIANTCOOLINGTITLE24VIDEOPRODUCTIONMARKETTRANSFORMATION