Presented by

Considerations in Evaluating Efficiency Programs in the Agriculture Sector

Frank Loge

University of California, Davis Director, Center for Water-Energy Efficiency Professor, Civil and Environmental Engineering

Introduction to CWEE

Advance water management solutions for the integrated savings of water & energy resources

Impact Evaluation Approaches

Deemed savings values

stipulations based on historical & verified data

Measurement & Verification (M&V)

a project-by-project approach involving estimating energy and/or demand savings

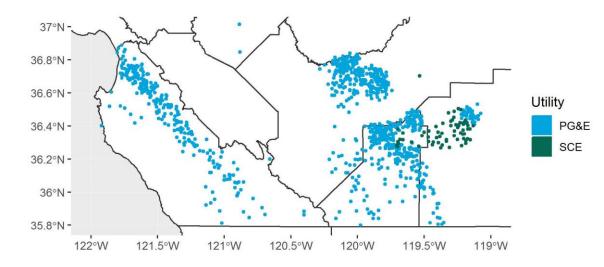
- Retrofit Isolation
- Whole Facility billing regression analysis
- Calibrated Simulation (e.g., EnergyPlus)

Large-scale consumption data analysis


uses metered energy use data to compare the energy use of the program participants with the energy use of a control group

Source: State and Local Energy Efficiency Action Network. 2012. Energy Efficiency Program Impact Evaluation Guide.

Farm Sites in Research Study

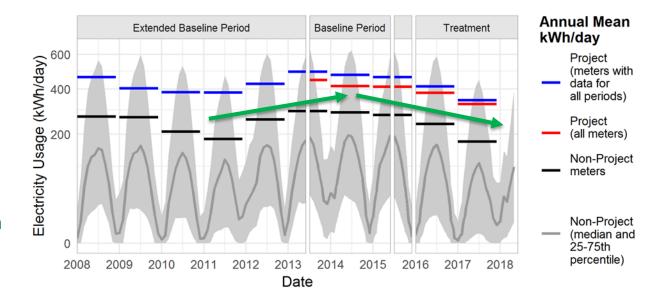

Agricultural Electricity

Agricultural Accounts

- PG&E ~ 13,300 meters
- SCE ~ 3,400 meters

In Total:

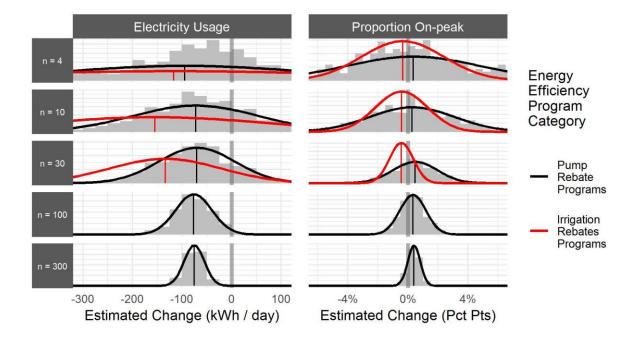
1,900,000 billing records
450,000,000 hourly kWh records


Challenges

Data availability:

- Groundwater extraction
- Crop production levels
- Operational changes

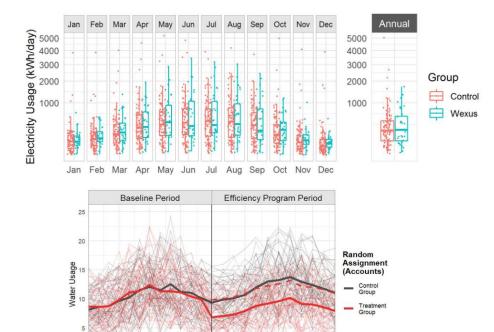
Regional long term trends, which are driven by external factors:


- Drought
- Groundwater levels
- Crop transitions

Irrigation Pump Rebate Programs

Can efficiency program savings be identified using a simple, pre-post comparison?

→ Yes, but estimated savings are unreliable in small sample sizes

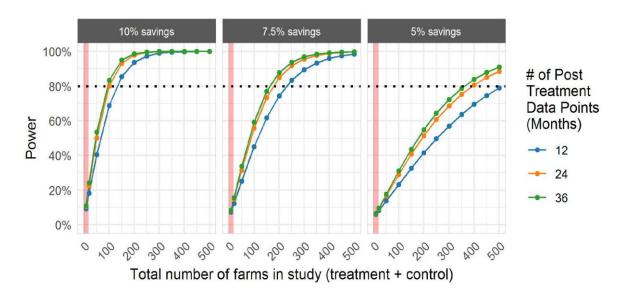

Behavior-based Programs

Additional Challenges

- Expected savings are small (<10%)
- Impossible to isolate
- Causal attribution is difficult

Control Group Comparison

- Matching methods used to identify similar control group (using baseline data)
- Panel data regression model used to incorporate longitudinal (over time) variation and cross-sectional (between farm) variation



Date

Behavior-based Programs

- Smaller savings require larger samples sizes to identify
- Power calculations are illustrated, given the observed variation and selected model

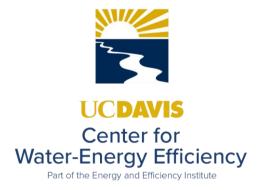
→ Larger sample sizes (more participating farms) are needed for these types of studies

Conclusions

Technology retrofit programs

- Pre-post comparisons (using retrofit isolation, or whole facility billing regression analysis) are possible, given access to the appropriate data
- An alternative is to carefully aggregate billing/consumption data regression analysis from many retrofits & farms

Behavior-based efficiency programs


- Large-scale consumption data analysis with a control group is the best approach
- Ideally designed as Randomized Controlled Trial (RCT)
- If RCT was not planned for, quasi-experimental approaches are possible
- In either case, control group meter data is required

This project was funded by the California Emerging Technologies Program and the California Energy Commission's Electric Program Investment Charge (EPIC) program.

For more information, contact Anish Gautum at Anish.Gautam@energy.ca.gov

Frank Loge

University of California, Davis Director, Center for Water-Energy Efficiency Professor, Civil and Environmental Engineering (530) 754-2297 fjloge@ucdavis.edu