Presented by

Designing for Technology & ZNE Clifford L. Allenby Building California Department of General Services

Nicholas Docous, AIA

Principal Architect, Lionakis

Zero Net Energy

DGS definition of ZNE

"ZNE Source – Energy Efficient building that produces as much clean renewable energy as it consumes over the course of a year, when accounted for at the energy generation source."

Our Approach

A high-performance building that meets contemporary standards for occupant comfort and building systems while providing a superlative and collaborative work environment enhanced by occupant education and feedback that addresses building features and functions, receptacle-level energy reporting, and whole building operation optimization.

Critical Success Factors

Create a **DISTINGUISHED AND INSPIRATIONAL** building design that fosters positive relationships with stakeholders, occupants, and the community.

Ensure **TRANSPARENCY OF DEMOCRACY**, building security and safety for occupants, including during construction.

Include **INNOVATION WITHOUT UNDUE RISK** utilizing proven technologies.

Provide **FLEXIBLE WORKSPACES** to accommodate modern movements in employee behavior and technology, and attract future generations of employees.

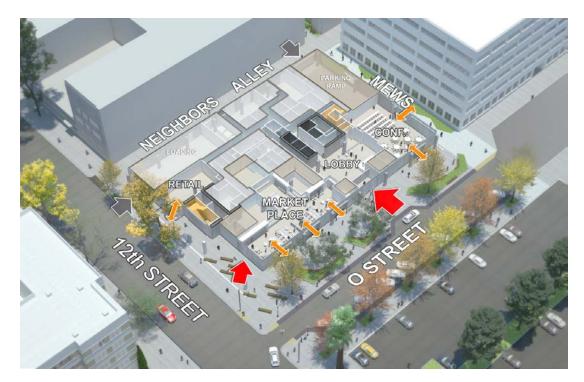
Create spaces that ENCOURAGE COLLABORATION, WELLNESS AND SATISFACTION of the occupants.

ENGAGE the **COMMUNITY** by providing a welcoming commercial space on the first floor.

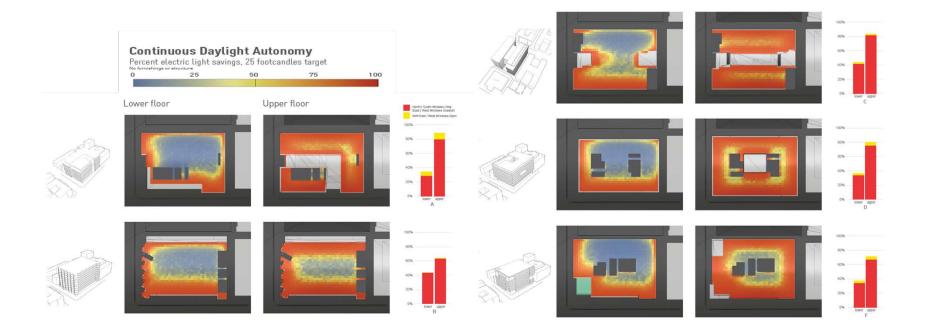
Support sustainable, **ZERO NET ENERGY** strategies, including a maximum target Site Energy Use Intensity (EUI) of 30.

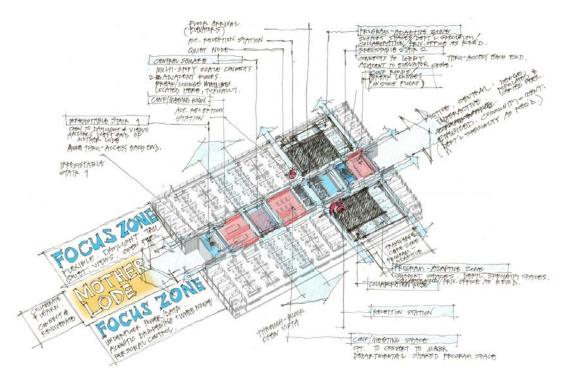
Include **WATER CONSERVATION** and reuse measures that exceed code requirements.

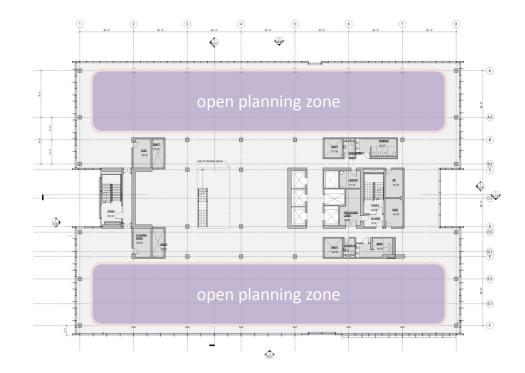
Provide a resilient, maintainable, durable, high-quality building designed and built to a **50-YEAR DESIGN STANDARD** with a 150 year life expectancy.

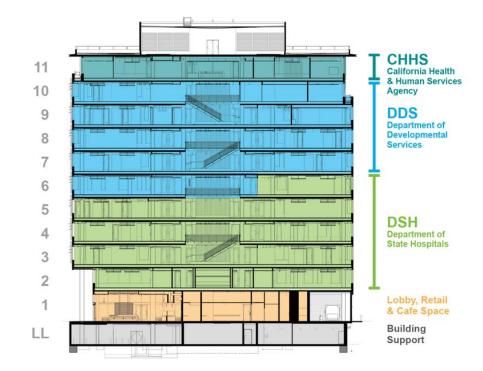

FOSTER POSITIVE RELATIONSHIPS with all stakeholders.

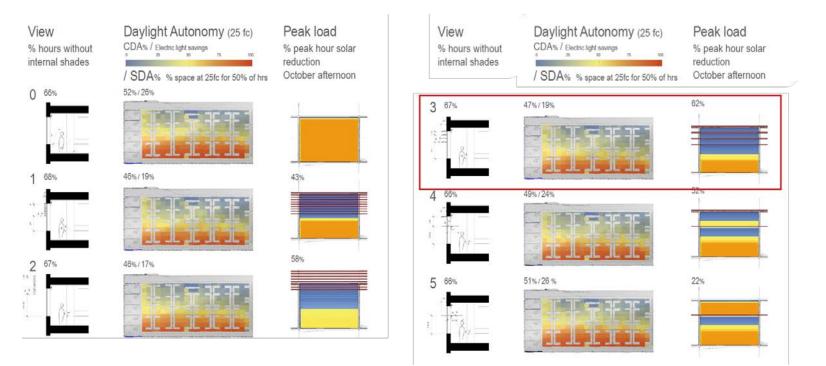
Complete the Project on budget and **MEET OR EXCEED** the schedule.


Design Approach




Massing Options


Mother Lode Concept


Typical Floor

Departmental Stack

Shading Optimization

Systems

RADIANT CONDITIONING Passive chilled sails and perimeter radiant heat deliver efficient enhanced comfort

thermal discomfort, and cooling energy use

THERMAL MASS Exposed post-tensioned concrete structure provides enhanced thermal comfort and energy savings

DISPLACEMENT VENTILATION Underfloor air system provides flexibility. efficiency and additional fresh air over code

ACTIVE WORKPLACE HUBS Departmental connecting stairs in the "Plaza", one of three sets of compelling elevator alternatives in building, promoting interaction

OCCUPANT FEEDBACK Dashboard for performance metrics and data analytics

> 120v chargers in parking garage; (6) 120v chargers in parking lot

HEAT RECOVERY

Enthalpy recovery wheel transfers sensible and latent energy from ventilation exhaust to supply

EXCEPTIONAL AIR QUALITY Electrostatic filters provide high

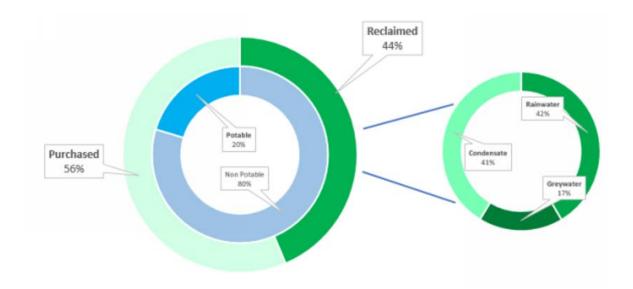
filtration to 100% outside air with reduced energy and maintenance

RECLAIMED WATER Rooftop collection of rainwater and air handler condensate

DAYLIGHT AND VIEWS North open office features glarefree daylight and view to Capitol grounds and mountains

PLUG LOAD MONITORING Circuit power metering at each floor

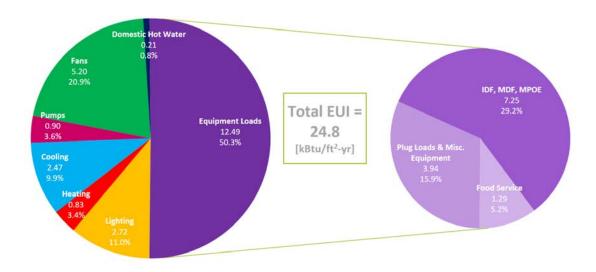
WATER METERING Separate tracking used for harvested and reused water.


GREYWATER RE-USE 25,000 gallon tank collects rainwater and AHU condensate, augmenting greywater day tank to supply toilets

BIKE FRIENDLY

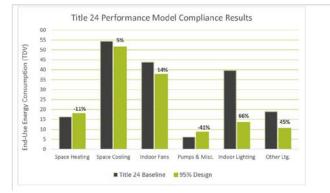
Commuter facilities include 100 secure racks and 4 showers

Water Optimization

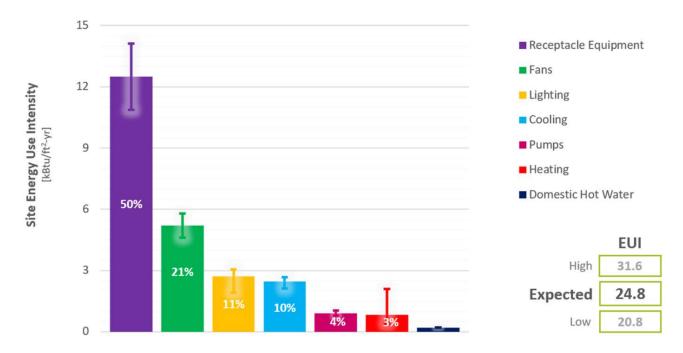


Energy: Roles & Responsibilities

Phase	Task	Responsible Party	Role	
Design	Create Energy Model	Glumac	Energy Modeler	
Design	Generate M&V Plan	Glumac	MEP Engineer	
Construction	Implement M&V Infrastructure	Schetter, Airco	Elec, Mech/Plumb Contractors	
	Implement M&V Software	L&H Airco	Controls Contractor	
	Commission M&V System	Enovity	Commissioning Authority	
	Data Collection	L&H Airco	Controls Contractor	
Post- Construction	Implement M&V Plan	Glumac, DGS, Airco, Schetter	MEP Engineer, Owner, Mech/Plumb, Elec Contractors	
	Model Calibration	Glumac	Energy Modeler	
	Building Calibration	R&S, L&H Airco, Airco, Schetter, Glumac, DGS	GC, Controls, Mech/Plumb, Elec Contractors, MEP Engineer, Owner	
	Data Analysis	Glumac	MEP Engineer	
	Confirmation of ZNE	DGS	Deputy Director - Sustainability	



Site Energy



LEED & Title 24 Compliance

Parameter	Unit	LEED Baseline	95% Design	
Vatural Das Consumption	k0tu	5,972,362	490,573	
Dednicity Comumption	kwh	3,481,636	2,564,750	
fotal Energy Consumption	kitu	17,852,196	9,212,162	
On Site Solar PV Energy Generation	kwh.		0	
MUD solarshares Purchased Electricity	kWh	e	2,700,000	
MUD SolarShares Purchased Electricity	N	0.0%	305.3%	
Indiricity Consumption with Renewables	kWh	1481.636	(135,250)	
fatal Energy Consumption with Renewables	kimu	17,052,196	(620)	
Juliding Arm	÷.	171,209		
ite EUI	KERLy/TC'-yr	48.29	24.52	
ite Energy Savings	5	48.4%		
ite EUI with Researchies	killsu/ft/-yt	48.39	0.00	
the Energy Savings with Reservables N		100.0%		
Vataral Gas Cest	Stheres	1.0	1.0172	
Sectricity Cent	5,1098	0.1	0.1171	
Total Energy Cost	\$	\$468,448	\$305,020	
integy Cost Savings	*	11.95		
Natural Gan Source Energy Multiplier		1.09		
Indricity Source Energy Multiplee		3.15		
fotal Source Energy	kBtu	43,929,799	21,067,768	
iource Energy Savings	5	MIN		
Vateral Sas GHG Emission Factor	metric ton CO1./MMBBu	0.0530200		
Sectionly GHS Relation Factor	muttric too CO2, /km/h	0.0067030		
futul Girlà Emilularis	meterik ban CO.tu	2,254	(71)	
146 Embuiens Saving %		102.6%		
Improvement Over LEED Baseline:	69.	69.3%		
LEED Points:	1	18		

Design End-Use Energy

Change Management

- Tenant engagement and user education
- Managing and optimizing building performance
- Measuring success

E-Blast Newsletter

Ongoing Measurement

Workplace Environment

Relationships

Performance

Design

Nicholas Docous, AIA

Principal Architect Lionakis nick.docous@lionakis.com www.Lionakis.com