ET Summit 2024

Presented by

Decarbonizing Heating and Cooling with CO2 Heat Pumps

Flow's ANSWR

Sean Jarvie Chief Technology Officer Flow Environmental Systems

The Problems

The EXISTING Built Environment contributes to ~40% of all greenhouse gas (GHG) emissions.

How do we retrofit existing systems?

The global building stock is expected to double by 2060. How do I build a better building?

We need to reduce building emissions.

- Voluntarily
- Regulatory

Biggest Levers

- Electrification of Heat
- Heat Pumps
- Refrigerants

Solutions for Heating

Legacy: The Past

Combustion

- Furnaces
- Boilers

Electric Resistance

Heat Pumps: the Present and the Future

Air-to-Water

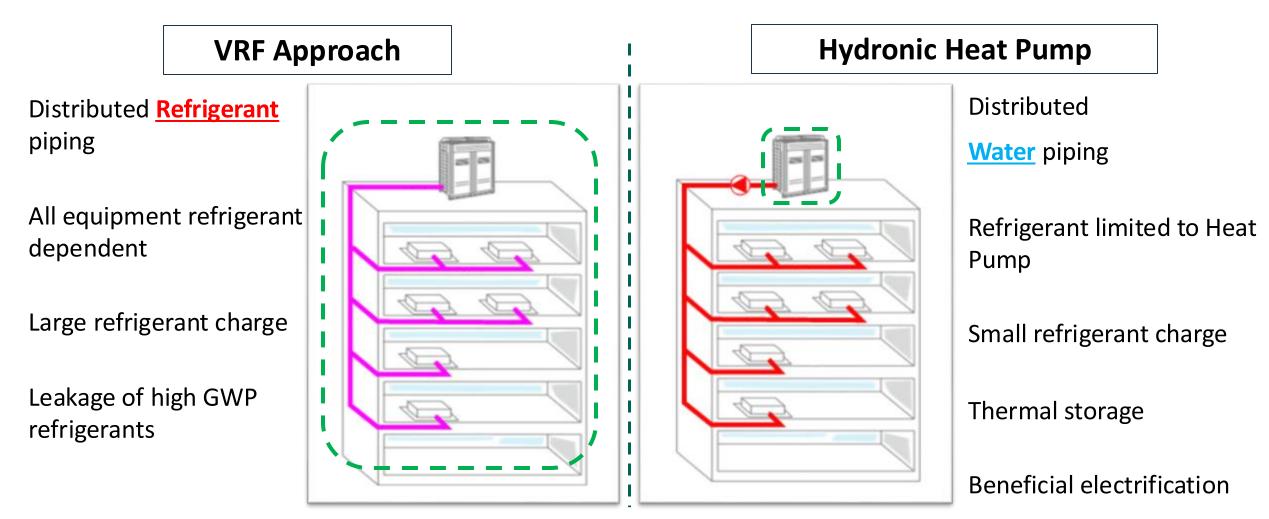
<u>Hydronic</u> systems

Water-to-Water

- <u>Hydronic</u> Systems
- Simultaneous Heating and Cooling
- Heat Recovery
- Booster
- Geothermal / Geo Exchange

Water-to-Air

- <u>Hydronic</u> systems
- Boiler tower arrangements


Air-to-Air

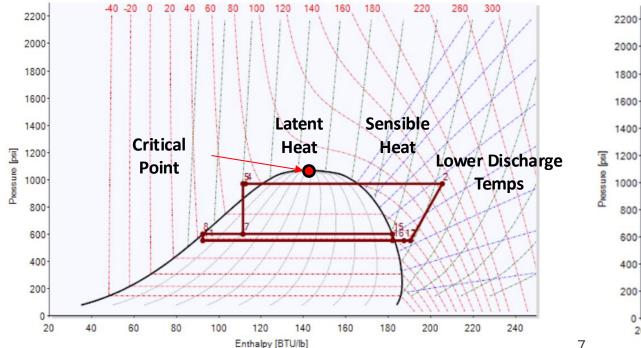
- DX RTU's
- <u>Hydronic</u> AHU's

VRF

• Refrigerant Based

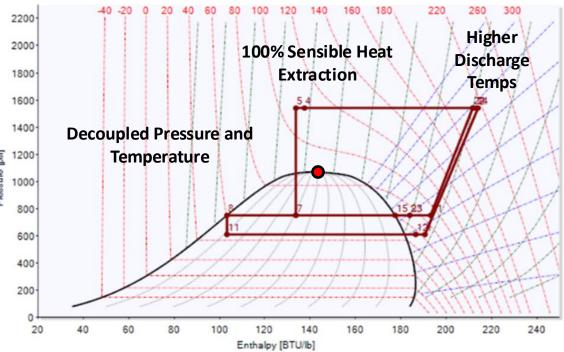
Movement to Hydronic HP Systems

Refrigerant GWP restrictions and phaseouts favoring smaller refrigerant volumes and natural refrigerants

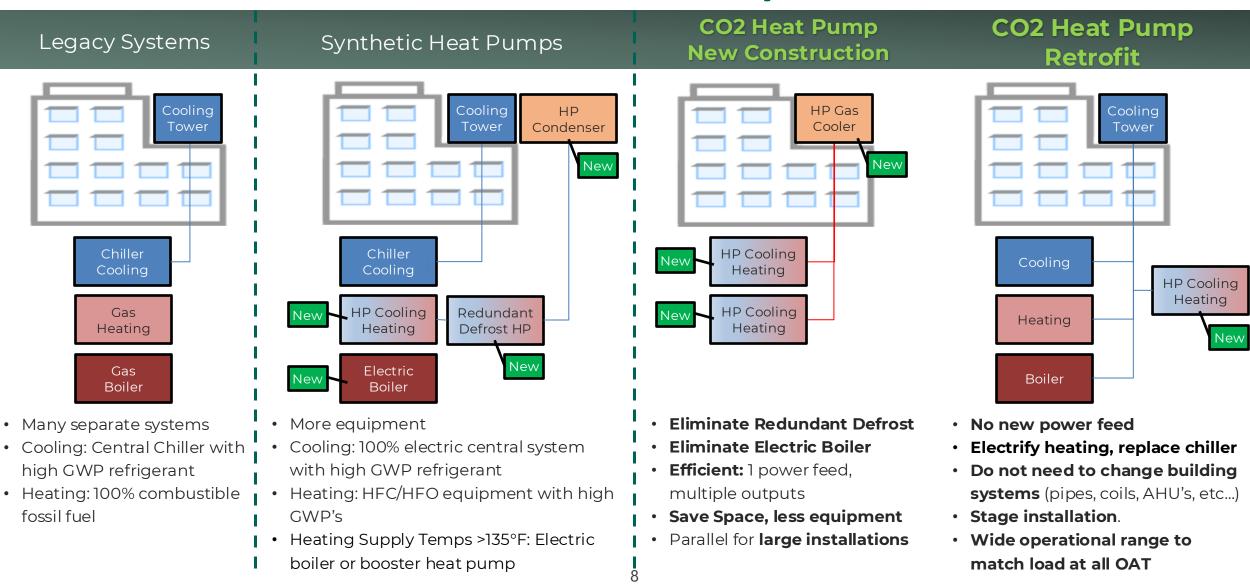

Refrigerants for Heat Pumps

		Natural			Synthetic High Pressure			Synthetic Low Pressure				
	Regulation Targets		R-290 Propane	R-717 Ammonia	R-410a	R-32	R-454B	R-134a	R-513A	R-1234yf	R-1234ze	R-1233zd
Composition		Pure	Pure	Pure	Blend 50% R-32 50% R-125	Pure	Blend 68.9% R-32 31.1% R-1234yf	Pure	Blend 44% R-134a 56% R-1234yf	Pure	Pure	Pure
Туре		CO2	HC	NH3	HFC	HFC	HFO	HFC	HFC/HFO	HFO	HFO	HCFO
GWP ₁₀₀	<750 <150	1	3	0	2256	677 771	467 531	1530	571	1	1	4
ODP	0	0	0	0	0	0	0	0	0	0	0	0.00034
Safety Class	A1	A1	A3	B2L	A1	A2L	A2L	A1	A1	A2L	A2L	A1
PFAS	No	No	No	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
1.) GWP's based on IPCC AR5. Items in yellow are changes coming in IPCC AR6												
		Transcritical	Subcritical									

What is different with a CO2 Heat Pump?

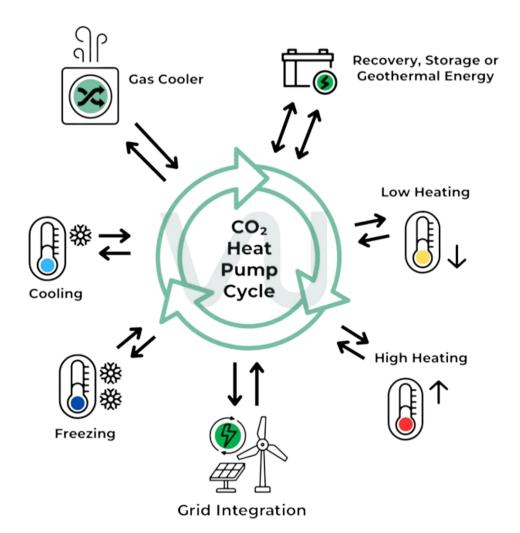

Subcritical

Refrigerant condenses in the condenser



Transcritical

Refrigerant does NOT condense in the gas cooler



CO2 Heat Pumps

Key Benefits

- Environmentally friendly natural refrigerant (CO2/R744)
- Simplified system design and installs
- High delivery temperatures (up to 180°F)
- Cold climate performance (down to -40°F)
- Efficient (High COP, no defrost, no derates, etc...)
- Seamless transition between heat, cool, and simultaneous heating and cooling
- Robust supply chain
- Low carbon emissions
- Low total cost of ownership
- Minimal infrastructure changes
- Future proof (Regulations)

Webpage

Decarbonize and Detoxify

Eliminate the need for fossil fuels

Serve harder to electrify end-use cases

Sean Jarvie

Chief Technology Officer Flow Environmental Systems sales@flowheatpump.com www.flowheatpump.com

FIOVU Environmental Systems Inc

