Presented by





# Demonstrating an Integrated Thermal Heat Pump System for Hot Water and Air-Conditioning at Full-Service Restaurants



Hardik Shah

Sr. Program Manager, Heat & Power

GTI Energy

### **Table of Content**

- Introduction & Motivation
- Describing the THP and Integrated System Approach
- Test Sites and Baseline Results
- Integrated System Installation and Results
- Conclusions



## **Potential for Energy and Emissions Savings**

- Service hot water (SHW) remains an important efficiency target in multifamily (MF) and restaurants\*
  - 1<sup>st</sup> gas load in MF (50%), 2<sup>nd</sup> in restaurants (23%)
  - In CA, restaurants use > 340 million therms/yr\*\*
- Typically boiler + Indirect Storage Tank (IST) (dedicated/zone) or storage-type
  - Racked tankless products evaluated in parallel **GTI** demos

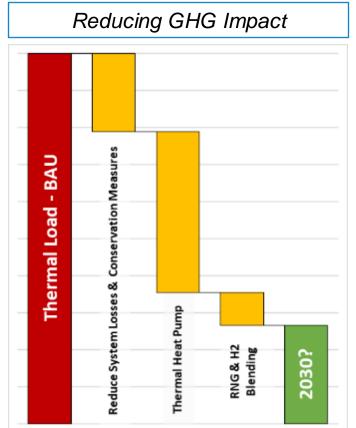
\*Delagah, A. and Fisher, D. (2013) Energy Efficiency Potential of Gas-Fired Commercial Water Heating Equipment in Foodservice Facilities, Report prepared by FNI for the CEC, CEC-500-2013-050.

\*\*Data Source: EIA RECS (2015), DNV Kema, "California Energy Commission Energy Efficient Natural Gas Use in Buildings Roadmap", public presentation (2013).





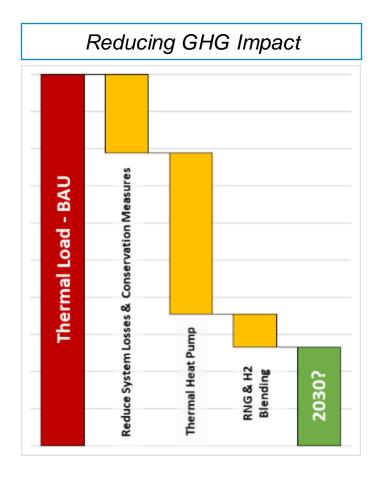
# **Potential for Energy and Emissions Savings**


- Industry push to >90% eff., >2X over '09-'19 to ~50%\*\*\*
- Must go beyond condensing, leverage innovations in thermal heat pumps Air/water-to-water THPs available, more under development\*\*\*\*
  - Retrofit-ready, raise net eff. > 100% of SHW system
  - Optional 'free cooling'



# **Thermal Heat Pumps**

- Primary advantage of THPs is >40% reduction in gas consumption over baseline
  - Studies indicate >1.20 UEF, >140% AFUE feasible\*
  - Better retain capacity, efficiency in cold climates\*\*
- Add'l benefits include, typically:
  - Combustion outdoors or sealed, no IAQ concern
  - Climate-friendly natural refrigerants (NH3, CO2)
  - Multi-function appliance w/ heat recovery


\*\* Glanville, P. et al. Demonstration and Simulation of Gas Heat Pump-Driven Residential Combination Space and Water Heating System Performance, ASHRAE Transactions . 2019, Vol. 125 Issue 1, p264-272



<sup>\*</sup>Glanville, P. et al. Integrated Gas-fired Heat Pump Water Heaters for Homes: Results of Field Demonstrations and System Modeling, ASHRAE Transactions . 2020, Vol. 126 Issue 1, p325-332

#### **Thermal Heat Pumps**

- Key piece in thermal load decarbonization puzzle
  - Address low-hanging fruit with system losses, conservation (e.g. demand recirculation)
  - THP partial/full retrofit
  - Further reductions with low-carbon fuels (25% blend shown, higher is feasible)

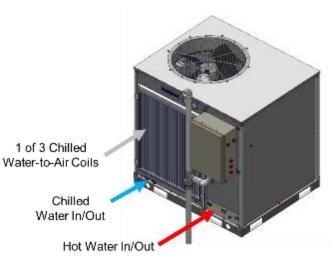


## **Integrated System Design**

#### "Skidding" the THP System

- Factory assembled, plumbed
- 80 kBtu/hr THP with chilled water-to-air coils replacing refrigerant-to-air evaporator coil
- 113 gallon (428 L) IST
- Skid dimensions:

48" x 96" x 74" (W x L x H)


• Outdoor installation, ease of installation/removal

#### Indoors/Balance of System

 Chilled Water Fan Coil, conv. gas-fired water heaters, controls





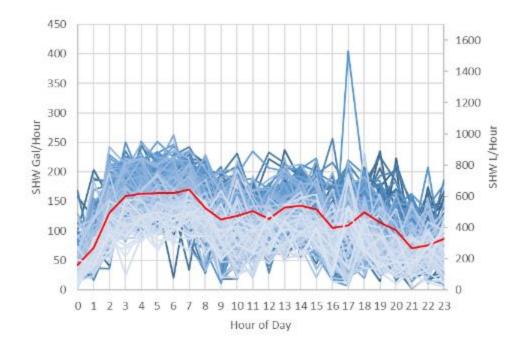




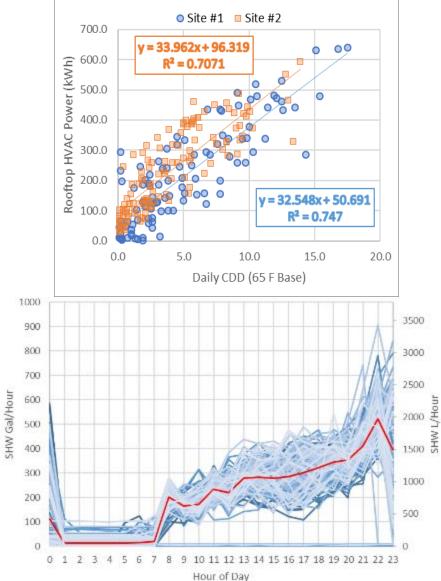
# **Test Sites & Existing Equipment**

#### Site #1: 24-Hour Diner

- Mgr estimated 1400 meals/day (Sa/Su), 900 meals/day (M-Th), and 1200 meals/day (Fri); ~3,500 gal/day
- Water Heating: Two Storage GWHs; 100 gal/270 kBtu/hr input each; 82% TE and atm. venting
  - Both set to 140°F, 180°F booster at dish machine, 24/7 recirculation
- HVAC: 1 RTU, 5 HPs


#### Site #2: Full-Service Restaurant (FSR)

- Mgr estimated 1,260-2,800 meals/day, ~6,000 gal/day
- Water Heating: Two Storage GWHs; 100 gal each, BTH 199 and BTH 250; 97% TE
  - Also set to 140°F, 180°F booster at dishmachine, 24/7 recirculation
- HVAC: 5 RTUs




#### Baseline Data Collection – 7 mo.

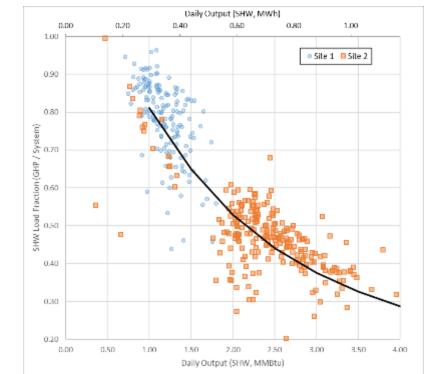
|                      | Average<br>SHW:<br>Gal/day | Peak<br>SHW:<br>Gal/day | Peak<br>SHW:<br>GPM | SHW Inputs:<br>Therms/kWh | Delivered<br>Est. SHW<br>Efficiency | Annual<br>HVAC A/C<br>Demand:<br>MWh |
|----------------------|----------------------------|-------------------------|---------------------|---------------------------|-------------------------------------|--------------------------------------|
| Site #1: 24-hr Diner | 2,722                      | 3,736                   | 11.9                | 8,300 / 716               | 70.0%                               | 79.0                                 |
| Site #2: FSR         | 4,821                      | 6,995                   | 19.7                | 13,100 / 966              | 79.1%                               | 71.0                                 |



10



# **Integrated THP System - Operation**

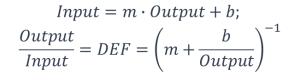

Near constant THP operation over 12 months

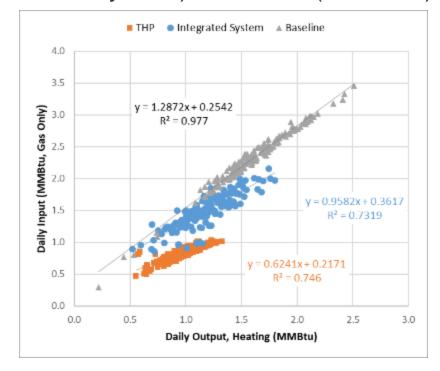
- Continuation of SHW demand at both sites during THP period
- Calls for cooling observed year-round Wide range of conditions observed
- Outdoors 35°F-111°F
- THP return 100°F-125°F

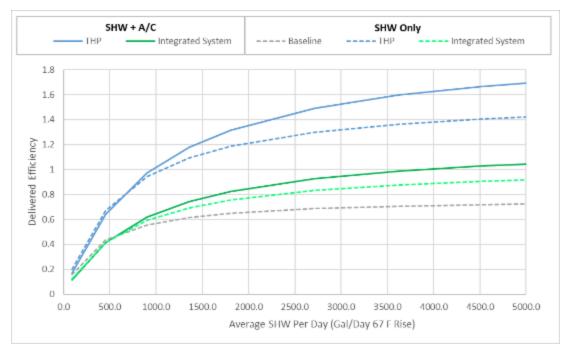
|                                               | Site #1<br>24 h Diner        | Site #2<br>FSR               |
|-----------------------------------------------|------------------------------|------------------------------|
| THP Cycles                                    | 1157                         | 597                          |
| THP Hours                                     | 4792                         | 4224                         |
| Average COP <sub>Gas</sub> SHW<br>(SHW + A/C) | 1.10 – 1.30<br>(1.30 – 1.70) | 1.25 – 1.45<br>(1.40 – 1.90) |
| Average SHW Gal/day                           | 2,226                        | 4,396                        |
| Avg. T Rise °F                                | 66.1                         | 70.7                         |
| Average THP Load<br>Fraction                  | 73.7%                        | 43.2%                        |

THP @ Site #1 serves a smaller demand, thus is "load-following", leading to:

- Greater THP utilization, BUT
- Greater fluctuations in THP operation
- Lower overall efficiencies



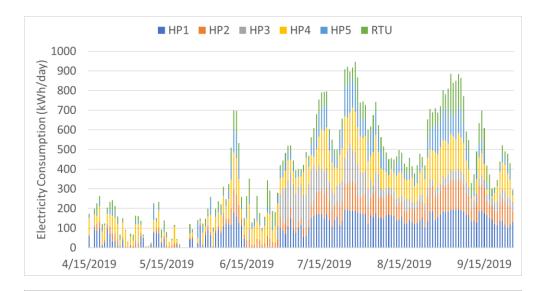


## **Integrated THP System - Efficiency**

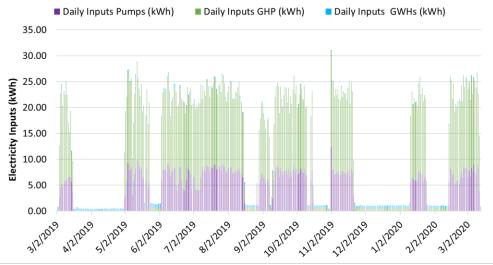

"Input/Output" approach used (Site #1 Highlighted)

- Site #1 therm savings = 16% (system); 52% (GHP only)
- Site #2 therm savings = 26% (system); 53% (GHP only)

For Site #2, typical demand translates to COP of 1.65 (THP), 1.10 (Overall System), and 0.75 (Baseline)





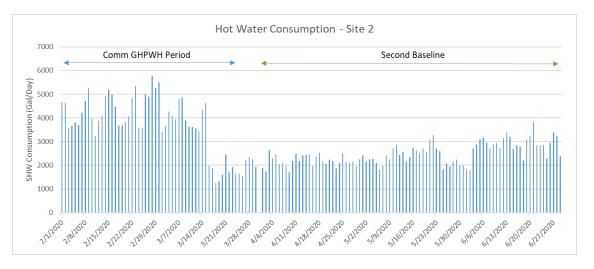

## **Integrated THP System – Power Demand**

Power Consumption:

- THP power 10-15 kWh/day
- Gas water heaters (small contribution)
- Circulation pumps important (≈ 50% GAHP\*), FCU ≈ 550 W
  - Higher ΔP led to low flow (lower A/C perf.) and higher power draw
- For supplemental A/C, ~5,500 ton-hrs delivered across sites (at coil)
- Weather-adjusted reduction in annualized monitored HVAC
  - Savings at Site #1 = 10,820 kWh; Site #2 = 9,660 kWh
  - 13.7% and 13.6% respectively






# **Integrated THP System – Economics**

Large impact of THP sizing

- As-is, payback is attractive for high-usage Site #2
- Modeling suggests sizing THP to meet 30%-60% of peak load is "sweet spot"

Net elec. increase assumes all cooling is useful

- Assumes \$0.91/therm; \$0.15/kWh; GHG 1,178.7 lb/MWh elec.; 144.2 lb/MMbtu gas
- Assessment was based on pre-COVID demand



|                                                  | Site #1          | Site #2              |  |
|--------------------------------------------------|------------------|----------------------|--|
|                                                  | 24 h Diner       | FSR                  |  |
| Average SHW Gal/day                              | 2,226            | 4,396                |  |
| Avg. T Rise °F                                   | 66.1             | 70.7                 |  |
| Average THP Load Fraction                        | 73.7%            | 43.2%                |  |
| Fuel Savings –<br>System As-Is                   | 16%              | 26%                  |  |
| Fuel Savings –<br>THP Right-size                 | 52%              | 53%                  |  |
| Net Electricity Increase<br>(kWh/day)            | 8.3              | 6.9                  |  |
| Operating Cost Savings –<br>Gas (Net)            | \$967<br>(\$617) | \$2,775<br>(\$2,527) |  |
| Simple Payback – Fuel Basis                      | 2.0 - 6.4        | 1.1 – 2.2            |  |
| GHG Reduction – THP Right-<br>size<br>Lbs/yr (%) | 44,610<br>(46%)  | 82,330<br>(48%)      |  |
|                                                  |                  |                      |  |

#### **Questions / Comments**



#### Hardik Shah

Sr. Program Manager GTI Energy hshah@gti.energy <u>www.gti.energy</u>



solutions that transform

## **Learning Objectives**

- Define the benefits of thermal heat pumps (THP) as applied to commercial water heating.
- Understand some of the design tradeoffs when sizing the heat pump component in an integrated system.
- Understand the difference between the three zone and the five zone model.
- Apply this five-zone model to commercial heat exchanges
- Measure local heat transfer coefficient in the plate heat exchanger.
- Visualize flow regime in plate heat exchangers.



Project Support: Utilization Technology Development, SoCalGas, and the California Energy Commission (PIR-16-001). Final Report

#### **THP – Absorption Cycle**

Medium T Sinki

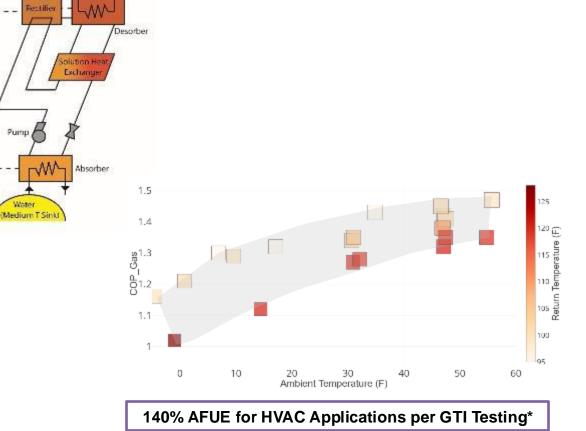
-m

Condense

-MM-

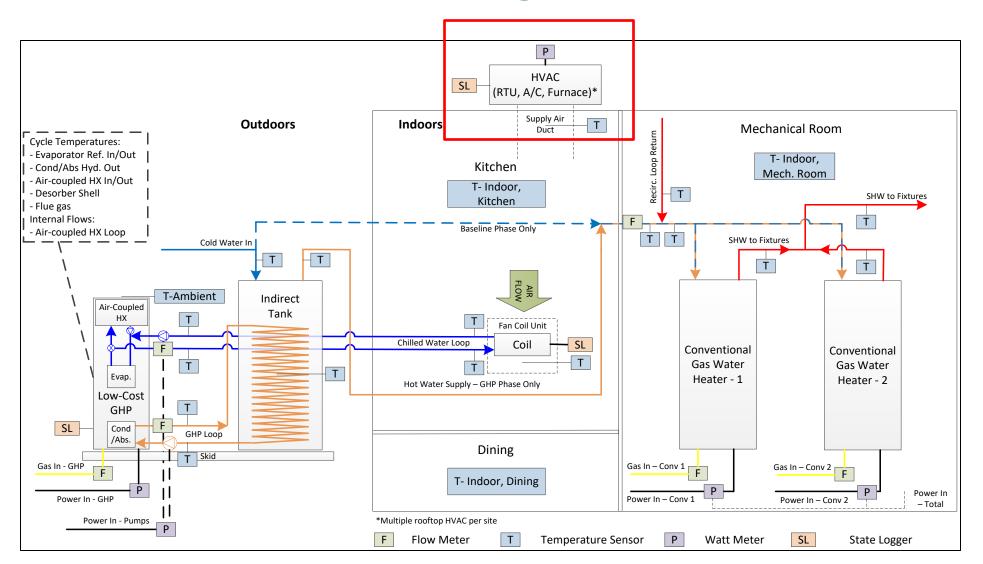
Evaporator

ow T Source)


Temperature

• HP Component is comprised of:

ET Summit 2024


- Heat exchangers: Absorber, Condenser, Desorber, Evaporator, Rectifier, RHX, and SHX
- Solution pump
- Expansion: EEV & WS Let Down

Water



<sup>\*</sup> Glanville, P., Suchorabski, D., Keinath, C., & Garrabrant, M. (2018), Laboratory and Field Evaluation of a Gas Heat Pump-Driven Residential Combination Space and Water Heating System, Proceedings of the ASHRAE Winter Conference, Chicago, IL.

#### **Monitoring Plan**



# **Integrated THP System - Installation**

#### Siting:


- Neither site met req's on spacing for THP, evaporator coil was closer than recommended to adjacent wall
- Indoor FCU was in suboptimal location at both sites, concerns of existing MEP in drop ceiling dictated placement
  - OTS FCU performance sub-par, high hydronic ΔP, one had internal damage

#### Closed Loops

- Air removal challenging, particularly ChW loops, after commissioning & servicing.
- ChW pumps undersized for fittings & instrumentation, below target flow rate for both sites – mainly Site #2

#### Calibration

• Only calibration applied to critical hydronic loop temperatures (sup/rtn X 2)

