Presented by



UCLA

#### ET Summit 2024

# Pilot Testing and Assessment of Safety and Integrity of Targeted Hydrogen Blending in Gas Infrastructure for Decarbonization

## CEC-UCLA: PIR-22-003



Pooya Khodaparast Utilities Engineer, ERDD California Energy Commission

## Outline

- Background
  - Gas R&D Program
  - Solicitation Policy Drivers
- Project Overview
  - Goals and objectives
  - Primary Use Cases
  - Flow of Technical Tasks
  - Risk and Performance Assessment

# Background: Gas R&D Program

- Research and development to support the transition to clean energy, greater reliability, lower costs, and increased safety for Californians
  - Benefits natural gas IOU ratepayers
  - Not adequately addressed by competitive or regulated entities
- \$24 million annual budget, funded by a surcharge on gas consumption in California
  - Energy efficiency, renewable technologies, conservation, environmental issues, and transportation
  - Supports state energy policy

# **Policy Drivers**

### GFO-21-507 - Targeted Hydrogen Blending in Existing Gas Network for Decarbonization

- Renewable and zero-carbon electricity generation by 2045 (Senate Bill 100, 2018).
- Hydrogen Injection Standards (CPUC Rulemaking 13-02-008 Phase 4, 2019).
- Assessment of hydrogen delivery through existing gas pipeline network (CPUC Resolution G-3555, 2019).
- CARB, CEC, CPUC are required to develop a comprehensive report on the development, deployment, and use of hydrogen (SB 1075)

## **Project Goals and Objectives**

Pilot Testing and Assessment of Safety and Integrity of Targeted Hydrogen Blending in Gas Infrastructure for Decarbonization

- Lead Organization: UCLA Risk Institute
- Sponsored by CEC, 3 years
- 4 industrial partners, 2 IOUs and 1 pipeline operator, UCI, SNL, DNV, GTI

#### **Objectives**

- Create a repository of available information
- Design and execute a hydrogen blending testing program
- Develop models to conduct risk and performance assessment
- Perform techno-economic analyses of various decarbonization pathways



## Primary Use Cases: Graniterock and UCI Microgrid



#### From Laboratory Work to System Wide Risk & Performance Assessment



Source: UCLA

# **Flow of Technical Tasks**



## **Example Results: Gap Analysis**

• Fast evolving landscape

ET Summit 2024

- System gaps are pervasive
- Examples:
  - Effect of contamination
  - Flow and heat transfer problems
  - H2 effects on polymers and elastomers
  - H2 effects on non-ferrous alloys
  - Sensing and metering
  - Technoeconomic analysis gaps



#### **Hydrogen Quantitative Risk Assessment**



Source: UCLA

# **Example Results: Component Modeling**

#### **Bayesian Belief Network Rationale**

- Compressor and regulator stations have many components each made of many parts and materials
- Failure statistics of some components used in oil & gas industry exists (OREDA database), but not in hydrogen service
- Bayesian network is a convenient way to include knowledge of hydrogen effects



## **Example: BBN Model for Valves**



Source: UCLA

- Model to consider various blending levels and operational factors
- produce projected risk, availability, efficiency, emission, and cost.
- Built based on extensive literature review
- Major Steps
  - Develop component-level model.
  - Combine component-level into system-level model
  - To be applied to several pathways (scenarios)
  - Optimum pathway will be identified via multivariate optimization



Conceptual TEA Nodal Model

ENERGY TRANSITION

# **Immediate Next Tasks**



# Thank you

#### Pooya Khodaparast

Utilities Engineer, ERDD California Energy Commission Pooya.khodaparast@energy.ca.gov



UCLA

Additional Project Information: <u>https://www.energizeinnovation.fund/projects/pilot-testing-and-assessment-safety-and-integrity-targeted-hydrogen-blending-gas</u>



## **Calculation Results**

|                             |            |           |           |           |          |         |          | Valve      |       |          |           |            |         |
|-----------------------------|------------|-----------|-----------|-----------|----------|---------|----------|------------|-------|----------|-----------|------------|---------|
|                             | Abnormal   |           | External  | External  | Fail to  | Fail to |          | leakage in |       | Minor in |           |            |         |
|                             | instrument | Delayed   | Leakage - | Leakage - | Close on | Open on | Internal | closed     |       | service  | Spurious  | Structural |         |
|                             | reading    | opeartion | Process   | Utility   | Demand   | demand  | Leakage  | position   | Other | problems | operation | deficiency | Unknown |
| Percentage of failures from |            |           |           |           |          |         |          |            |       |          |           |            |         |
| OREDA                       | 3.41       | 9.1       | 21.59     | 5.68      | 2.28     | 36.38   | 4.55     | 1.14       | 5.68  | 6.83     | 1.14      | 1.14       | 1.14    |
| BN Probabilities            |            |           |           |           |          |         |          |            |       |          |           |            |         |
| No hydrogen                 | 4.3        | 12.5      | 12.3      |           | 15.8     | 19.1    | 4.4      | 13.1       |       | 8.9      | 1.8       | 9.3        |         |
| 0 - 5 bar H2                | 4.3        | 32.9      | 29.6      |           | 25.9     | 34.7    | 8.3      | 29.1       |       | 13.7     | 1.8       | 26.6       |         |
| 5 - 20 bar H2               | 4.3        | 62.5      | 48.8      |           | 42.5     | 51.1    | 19.4     | 48.1       |       | 15       | 1.8       | 43.8       |         |
| 20 - 100 bar H2             | 4.3        | 67.5      | 57.6      |           | 47.8     | 61.2    | 13.9     | 55.8       |       | 16.9     | 1.8       | 54.5       |         |
| Number of failures reported |            |           |           |           |          |         |          |            |       |          |           |            |         |
| in OREDA                    | 3          | 8         | 24        |           | 2        | 32      | 4        | 1          | 4     | 6        | 1         | 1          | 2       |

Hydrogen increases the likelihood of various valve failure modes involving materials interactions

The failure probabilities for various modes do not add to 100% because in the BN, they are independent (but affected by some common factors)

19

## **Project Team and Primary Responsibilities**

| Institution                                                               | Туре                             | Form of Participation | Primary Role               | CEC Funds | Match Fund |
|---------------------------------------------------------------------------|----------------------------------|-----------------------|----------------------------|-----------|------------|
| Univ Calif Los Angeles (UCLA)                                             | Research and Education           | Lead                  | Project Mgt, Test/Analysis | x         | x          |
| Sandia National Lab (SNL)                                                 | Research and Development         | Partner               | Test Program               | x         |            |
| DNV                                                                       | Research/Development/Service     | Partner               | Test and Analysis          | x         | x          |
| Gas Technology Institute (GTI)                                            | Research and Development         | Partner               | Test and Analysis          | x         | x          |
| Univ Calif Irvine (UCI)                                                   | Research and Education           | Partner               | Test / Power Use Case      | x         | x          |
| MCC                                                                       | Consulting                       | Partner               | Test and Analysis          | x         | x          |
| System Safety LLC                                                         | Hydrogen Energy Consulting       | Partner               | Analysis                   | x         |            |
| Calif Steel Industries (CSI)                                              | Industry                         | Support/Participation | Candidate Use Case         |           |            |
| Solar Turbine                                                             | Industry                         | Support/Participation | Candidate Use Case         |           | x          |
| CalPortland                                                               | Industry                         | Support/Participation | Candidate Use Case         |           |            |
| GraniteRock                                                               | Industry                         | Support/Participation | Industry Sector Use Case   |           |            |
| Emerging Fuels Institute (EFI)<br>Pipeline Research Council International | Research and Development         | Support/Participation | Domain Expertise           |           |            |
| SoCalGas                                                                  | ΙΟυ                              | Support/Participation | Pipeline System/Blending   |           |            |
| PG&E                                                                      | ΙΟυ                              | Support/Participation | Pipeline System/Blending   |           |            |
| Williams                                                                  | Gas Pipeline Operator            | Support/Participation | Data /Domain Expertise     |           | x          |
| Sacramento Municipal Utility District (SMUD)                              | Community-owned Electric Service | Support/Participation | Data /Domain Expertise     |           | x          |

# **Relevant Policies, Applications & Decisions since**

- D.21-07-005: Directing California's four large gas utilities to propose system testing on the effects of hydrogen blended into methane at concentrations ranging from 0.1% to 20%
- A.22-09-006: Application from SoCalGas, SDG&E, and SWG for the creation of hydrogen blending demonstration projects by each utility.