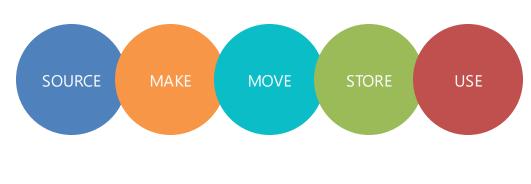
Presented by


H2 Blends for Residential and Commercial End-use Equipment

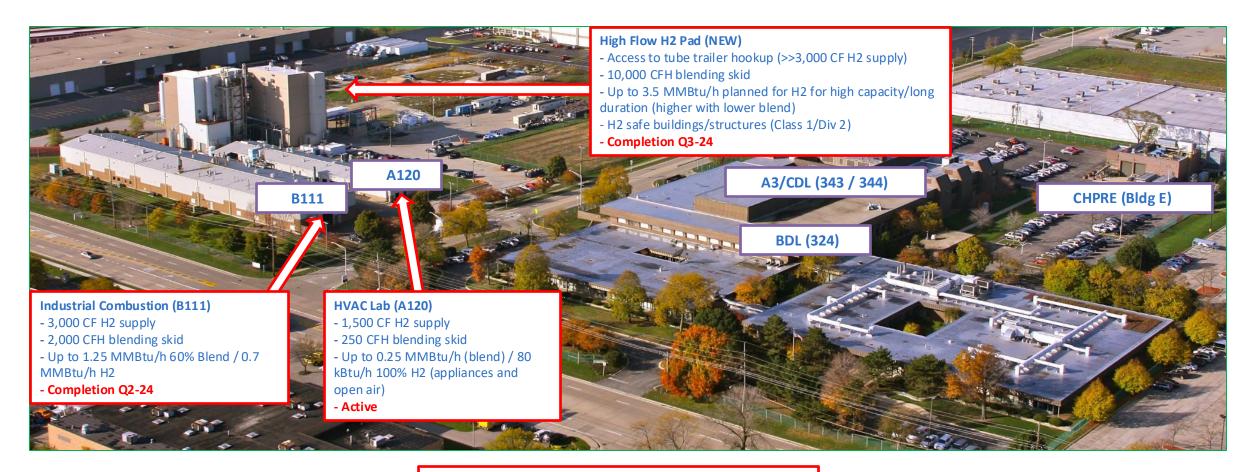
Ryan Kerr Director, Emerging Technologies GTI Energy

Content

- **GTI Energy Introduction**
- Hydrogen Blending Overview
- GTI Energy Projects Introduction
 - Lab Appliances Studies
 - Field Appliances Studies
- Summary

We develop and deploy solutions in the transition to low-carbon, low-cost energy systems

We work collaboratively to address critical energy challenges impacting gases, liquids, efficiency and infrastructure

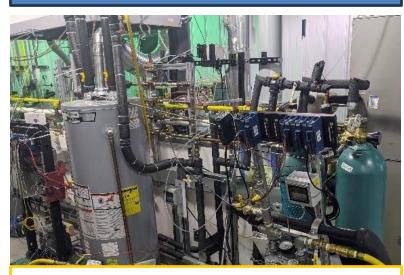


GTI Energy Expanding H₂ Utilization Laboratory Capabilities

Single Cylinder Testing

Everywhere marked with "" has current or planned tests with single cylinders (H2 or H2 blends), limited to ~250 CF and low firing rates (less than 200 kBtu/h)

Disclaimer: Details may change over time


Hydrogen Economy – Three R&D Pathways

Centralized Hydrogen Production

Blending into Current Grid

Convert to Hydrogen Dist.

How do H₂/NG blends impact existing **customer gas assets and gas-fired equipment?**

Studying the blended hydrogen safety/efficiency/emissions impacts

How can we assure that new gas equipment and retrofits are **hydrogen-ready?**

RD&D/Tech Transfer with equipment and sensors for hydrogen end use

Dist. H₂ Generation

Hydrogen Microgrids

How do we design and prepare for **hydrogen fuelflexible systems?**

100% Nat. Gas

95% H₂ Developing and demonstrating fuel-flexible combustion/CHP systems

Blending in Grid – Resources

Learning from historical transition (Recent Project/Paper*)

- Hawaii Gas cited, syngas with ~15% H_2 to ~30k customers
- There still exist large networks of H₂-rich gases including
 - Large networks can serve up to ~1,000k customers with ~50% H_2 fuels
 - Utilities market products direct to customers, installation and O&M

Senoko Gas Works – Singapore (Today)

Gas Works Park – Seattle (Decomm. 1956)

Freel	HHV Range Btu/ft ³	Major Constituents (% vol., dry)			
Fuel		CH ₄	H ₂	СО	Other
Coal Producer Gas	135-180	0%	10%	30%	~40% inert
Coal Retort / Coke Oven Gas	500-650	50%	33%	6%	CHs+inert
Carbureted Water Gas	500-550	0%	40%	35%	CHs+inert
Oil Gas	550-1000	27%	50%	13%	CHs+inert
Town Gas (Singapore)	500	26.7%	49.5%	3%	~17.5% inert
Raw Biogas	430-750	45%-75%	0%	0%	~25% CO ₂
Natural Gas	950-1050	90%-95%	0%	0%	0%-6% C2
20% H ₂ / 80% CH ₄ Blend	870	80%	20%	0%	
100% Hydrogen	320	0%	100%	0%	

Source: Pacific Coast Gas Association – A Century of Progress - 1993 //* Glanville, P., Fridlyand, A., Zhao, Y., (2023) From Town Gas to Hydrogen: Historical and Modern Perspectives on Transitions Between Delivered Fuels in the Built Environment, Proceedings of the 2023 ASHRAE Winter Conference.

Content

- GTI Energy Introduction
- Hydrogen Blending Overview
- GTI Energy Projects Introduction
 - Lab Appliances Studies
 - Field Appliances Studies
- Summary

DOE Hydrogen Hubs: Overview

Government Investments

- DOE H_2 Hubs (\$7B, 7 awards)
- GTI Energy major participants in

ARCH APPALACHIAN REGI CLEAN HYDROGEN	

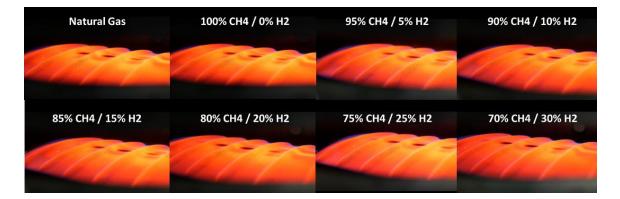
Appalachian Regional Clean Hydrogen Hub (EQT, Battelle, NETL) focus on H₂ + CCUS -<u>https://www.arch2hub.com/</u>

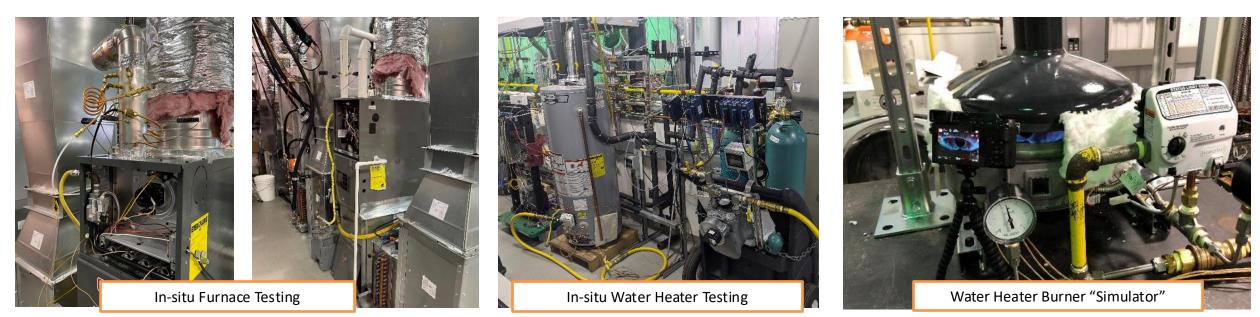
Midwest Focused Hydrogen Hub (Nuclear Operator, Utilities, Ind. End Users) -<u>https://machh2.com</u>

Gulf Coast H₂ Hub (Ports, Chem. Industry/Refiners) - <u>https://www.hyvelocityhub.us/</u>

DOE Hydrogen Hubs: Details

Name/Federal Cost Share	Location	Production	Midstream	End Uses	
Appalachian Hydrogen Hub (ARCH2) Up to \$925 million	Ohio, Pennsylvania, West Virginia	Hydrogen produced from natural gas, with carbon capture and storage	Hydrogen pipelines, hydrogen fueling stations, permanent CO2 storage	Fuel cell electric mining vehicles, heavy-duty vehicles, heavy industry	
California Hydrogen Hub (ARCHES) Up to \$1.2 billion	California	Electrolysis	Freight network between California and Pacific Northwest Hub, hydrogen fueling stations	Backup power generation, heavy-duty vehicles, port equipment, public transit	
Gulf Coast Hydrogen Hub (HyVelocity H2Hub) Up to \$1.2 billion	Texas	Electrolysis, hydrogen produced from natural gas, with carbon capture and storage	Hydrogen pipeline, salt cavern storage, hydrogen refueling stations	Heavy-duty vehicles, power generation, ammonia, refineries/petrochemicals, marine fuel	
Heartland Hydrogen Hub (HH2H) Up to \$925 million	Minnesota, North Dakota, South Dakota	Electrolysis, Biomass Gasification	Open access to storage and pipeline infrastructure	Fertilizer, power generation	
Mid-Atlantic Clean Hydrogen Hub (MACH2) Up to \$750 million	Delaware, New Jersey, Pennsylvania	Electrolysis	Expanded pipeline infrastructure, upgraded bus mechanic depots, hydrogen refueling stations	Heavy duty vehicles, refuse and sweeper trucks, power generation, combined heat and power	
Midwest Hydrogen Hub (MachH2) Up to \$1 billion	Illinois, Indiana, Michigan	Electrolysis, hydrogen produced from natural gas, with carbon capture and storage	Hydrogen refueling stations	Steel and glass production, power generation, refining, heavy-duty vehicles, sustainable aviation fuel	
Pacific Northwest Hydrogen Hub (PNWH2) Up to \$1 billion	Montana, Oregon, Washington	Electrolysis	Freight network between California and Pacific Northwest Hubs	Heavy-duty vehicles, ports, refining, peaking plants/generators, refineries, data centers	

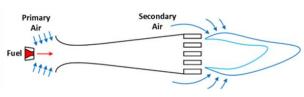

Content


- GTI Energy Introduction
- Hydrogen Blending Overview
- **GTI Energy Projects Introduction**
 - Lab Appliances Studies
 - Field Appliances Studies
- Summary

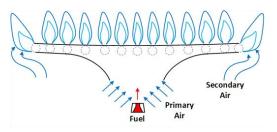
GTI Energy Lab Work: Hydrogen Blending

Scope of Testing - "Simulator" testing and In-situ

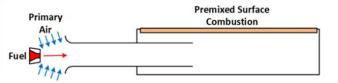
- Natural gas, 0%-30% H_2 in CH_4 in 5% increments
- Simulator tests operated manually: Furnace (in-shot), Water heater burners: Standard NOx (2), Ultra Low NOx (2)
- For in-situ, appliances with automation of loads: Two furnaces, Three water heaters

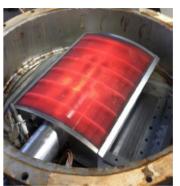


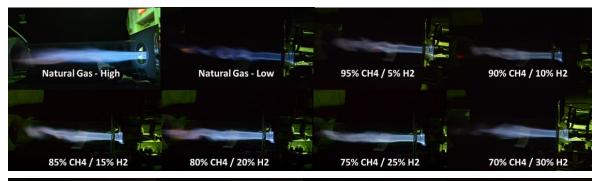
https://www.mdpi.com/1996-1073/15/5/1706

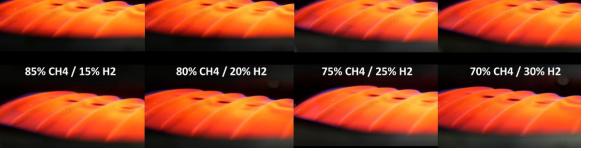

GTI Energy Lab Work: Hydrogen Blending

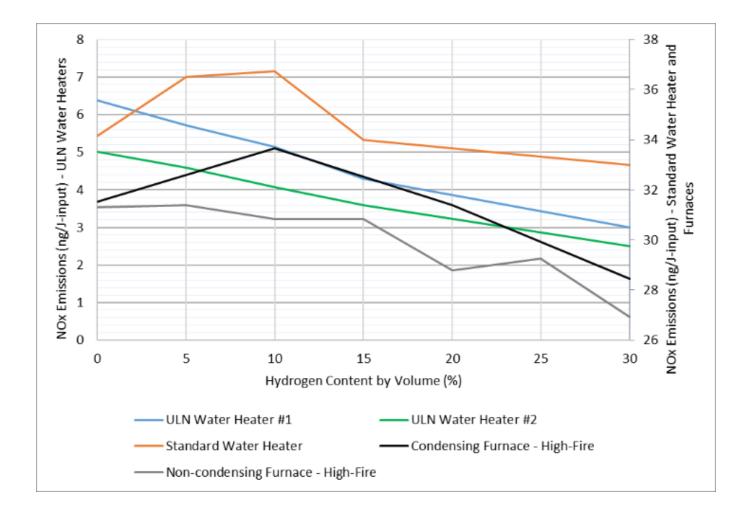
"In-Shot" Warm-air Furnace Burner (< 40 ng NOx/J)




Standard NOx Water Heater Burner (< 40 ng NOx/J)




Ultra-Low NOx Water Heater Burner (< 10 ng NOx/J)



GTI Energy Lab Work: Hydrogen Blending

Based on data collected to date in typical, unadjusted customer equipment, will blended $H_2/NG...$

- Cause equipment to immediately malfunction?
 Not likely
- Lead to unsafe operating temperatures? Not likely
- Adversely impact efficiency? Not likely
- Increase NOx or CO emissions? Generally no
- Increase leakage within building? Not worsened by blending

https://www.mdpi.com/1996-1073/15/5/1706

Cross-cutting – Hydrogen Microgrids

Equipment designed for fuel-flexibility (0%-100% H2) or hydrogen-firing are essential for <u>H₂-</u> <u>energy microgrids</u> in demonstration phase and "proto-hubs" <u>today</u>

Demo projects of H₂-microgrids underway at Army & Navy facilities, from backup power to central heating to containerized solutions

Source: Upstart / Bloom Energy / GTI Energy

Integrated energy systems development & extended life testing of mCHP and fuel cells in GTI Energy labs

Content

- GTI Energy Introduction
- Hydrogen Blending Overview
- **GTI Energy Projects Introduction**
 - Lab Appliances Studies
 - Field Appliances Studies
- Summary

Industrial Decarbonization – Hydrogen

Three Sets of Research Questions

Centralized H₂ Production

- 1) Blending into Gas Grid
- How do H₂/NG blends impact existing customer gas assets & process quality?
- 2) H₂ Infrastructure
- How can we assure that new gas equipment and retrofits are H_2 -ready?

Distributed H2 Generation

3) H₂ Microgrids

How do we design and prepare for H₂ fuelflexible systems?

Recent DOE Starts for H₂ Flexible Industry (2023 / 2024) **Hydrogen Fuel-Flexible Boiler for Regenerative High-Efficiency Low-Carbon Fuel-Flexible System** the Food & Beverage Industry - In-situ retrofit system for in - Advanced regenerative use hot water/steam boilers burner for iron/steel industry, Advanced zero GHG burner for 30%-100% H₂ and biofuel Al-assisted controller/mixer injection Digital twin model of system - Low NO, & 5:1 turndown - Partner with dairy/beverage Partner with large steel processors producer Source: Mountaintop Beverage OAK RIDGE **OAK RIDGE** G)O Argonne GTI ENERGY BLOOM Fulton Finkl Stee ENGINEERING® **Noble Thermodynamics Zero** Fuel-flexible, Ultra-low NOx, **Emission CHP System Omnivore Combustion System** - Cross-cutting process \bigcirc Scale-up of novel power cycle heating solution for full for industrial CHP with H₂ **GTI ENERGY** fuel flexibility (0%-100% - Elimination of GHGs (H₂) and H₂, biogas, syngas, etc.) NO_x (Recirc. Ar) through Honeywell - Ultra-low Emissions Tuning "mechanical fuel cell" process Demonstrated at pilot - Proposed 300 kWe / 200 kW_{th} Bright scale, with feed System Argonne forward/backward controls nople Control Logic Source: Noble Thermodynamics Argonne thermodynamics Flue Gas Analysis Sandia AVL 3 **b** National Laboratories **GTI ENERGY**

Blending-to-H₂ Ready – CEC C&I Project

California-Focused Project

- Large effort to quantify the potential of hydrogen to decarbonize **large buildings and industry in California**:
- Develop techno-economic roadmap to decarbonize ~50% of CA's nat. gas use
- Large effort across diverse team to:
 - Develop CA-specific techno-economic analysis for H_2 use, quantify potential/costs of conversions to H_2
 - Test/model H₂ tolerance of wide range of large equipment categories (e.g. boilers)
 - Material testing for long-term impacts
 - Air Quality simulation on regional impacts
 - Stakeholder outreach and engagement

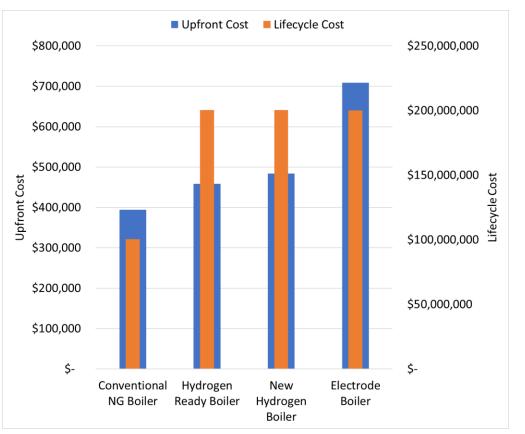
Decarbonizing Large Commercial and Industrial Equipment with Hydrogen (PIR-22-001)

- 2+ units per equip. category
- Finalized after Preliminary TEA

Commercial Examples:

- Furnaces/Weatherized HVAC
- Water Heater/Hot Water Boilers
- Cooking / Catering Equipment

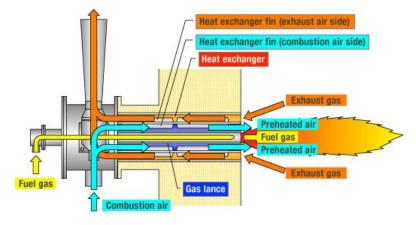
Industrial Examples:


- Steam Boilers / Process Heaters
- Ovens / Dryers / Kilns
- Heat Treating / Furnaces

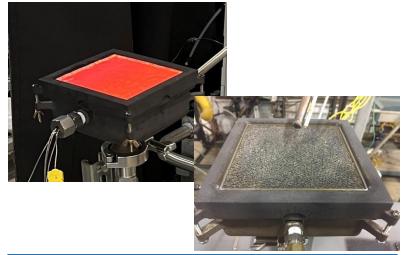
Blending-to-H₂ Ready – CEC C&I Project

TEA: On Costs & Benefits - For H₂ ready/100% H₂ equipment, *equipment* costs are limited but so is data

- Similar & maximum statewide GHG reductions from *Partial Electrification* + H_2
- Increasing evidence that for H₂ < 30%, no cost/retrofit needed, manufacture self-certifications in US/Canada already active
- UK/EU OEMs have noted H₂-ready and 100% H₂ equip. will have comparable costs at scale to natural gas equipment.
 - Key components: controls, burner, ignition/flame supervision;
 "cross over" points differ by type/vendor


 Boiler capacity of 15 MW and annual operating hours of 8000 are assumed
 Lifecycle costs of Electrode boiler includes cost reductions due to monetized non- energy benefits

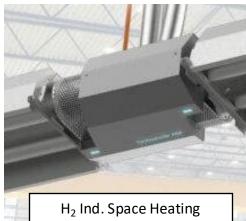
Prelim. TEA Summarized in 2023 ACEEE Conference Proceedings: <u>link</u>


Technical Review: Structure of Survey

- Objective / Scope of Review
- Literature Review Impact in Existing Equipment
 Combustion Fundamentals
 - Combustion Component Impacts (Burners, Controls)
 - Leakage Enhancement from Blending
 - Equipment-Specific Studies
 - Boilers (Steam, Hot Water)
 - Industrial Process Heating Equipment (Furnaces, Ovens, Dryers, etc.)
 - Commercial HVAC
 - Commercial Cooking Equipment
 - $_{\odot}$ Impacts on End Users
- Literature Review Adopting H₂-based Fuels
 - Adapting Existing Equipment
 - \circ Designing for 100% H₂
- Synthesis and Recommendations

Full review by GTI / UCI available to UTD members and by request to GTI

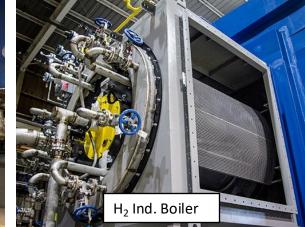
C ENERGY TRANSITIO



Survey includes detailed descriptions of fundamentals and review of published results (examples above Osaka Gas, GTI Energy)

Blending-to-H₂ Ready – CEC C&I Project

Technical Review: Designed for H₂


- Distribution, gas trains, combustion controls (air moving, valving, ignition), burners, and finished equipment are increasingly:
 - Designed for blends "H₂ ready", typ. 20%-30%
 - Hydrogen-fired applications
 - Certified in US markets

Source: Schwank

Source: Clearsign

CLEVELAND-CLIFFS INC.

In 2023, Cleveland Cliffs announced a successful firing of 30% H₂ / 70% NG in a blast furnace at Middletown works, stating that modifications can allow up to 70% H₂

Source: https://www.clevelandcliffs.com/sustainability/environment/energy

Source: Babcock & Wilcox

21

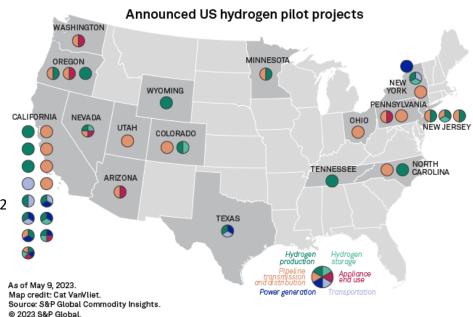
Blending-to-H₂ Ready – CEC C&I Project

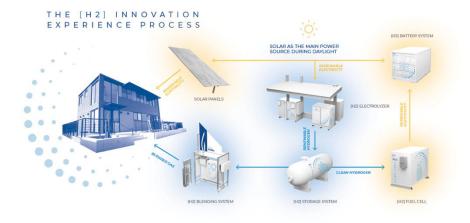
What's Ahead for This Study:

- Test rigs for six categories of heating equipment being built now
- Examples of natural gas equipment tested with increasing hydrogen two ways (on / off rate) over 2024
 - Data collected on performance, emissions (NO_x, CO, CH₄, H₂), noise, etc.
 - Evaluate retrofit options for higher H₂
- Calibrate CFD combustion model for extrapolation to equipment/designs
- Investigate **impact on materials** of construction (e.g. refractory) in parallel
- Perform statewide air quality modeling and revise Final TEA

Equipment Type	Sub-type(s)	Coverage Range	Test Unit Range	
Boilers	Steam Hydronic/Hot Water	Up to 50 MMBtu/h input	300 to 3,000 kBtu/h input	
Direct-fired Process Heating	Ovens, kilns, and dryers	Up to 100 MMBtu/h input	500 to 2000 kBtu/h input	
Industrial Furnaces	Recuperative / Non- recuperative Burners	Up to 100 MMBtu/h input	500 to 2000 kBtu/h input (200 to 500 kBtu/h Radiant tube)	
Commercial HVAC	Warm-air Furnace, Duct Furnaces, & Unit Heaters	200 to 1,000 kBtu/h		
Commercial Cooking	A range equip.: fryers, broilers, griddles, ovens, charbroilers, and ranges	100 to 500 kBtu/h		

Regional Hydrogen Blending Efforts


Utility Investments


- Renewable natural gas/Biomethane, Bio-LPG, Biodiesel available in many markets to reduce GHG emissions
- Synthetic natural gas/E-methane projects underway, H₂ with captured CO₂
- Numerous States/Provinces have one or more H₂/NG blending demo projects in planning/underway
 - Several involving 100s 2,000s of utility customers
- H₂ distribution projects are ramping up in US/Canada

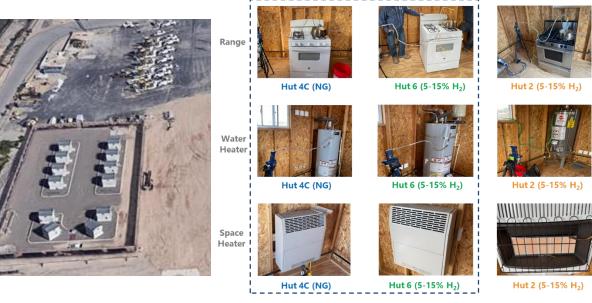
Blending-to-H₂ Ready – Field Research

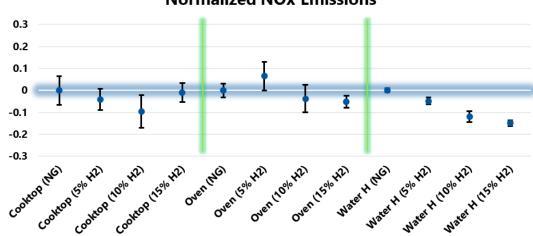
Utilization Technology

Development

Guest presentation by NM in Fall '23

- Field R&D growing as complement to lab-based testing of H₂ blend impacts
 - Field sampling in NM, UT, NV, etc.;
 collaborative equipment test programs
 - Covers higher blends (20%+) and infield samples in ~2,000 customer trial
 - Measuring leakage, equipment impacts, gas quality
 - Projects blending into central boiler plants in TX, MD, and elsewhere
- **GTI Leading** in 30-unit Las Vegas-area demo with <u>Southwest Gas</u>
 - Central/wall furnaces, space/water heaters, cooking, dryers, outdoor heating, and decorative appliances, design for 8 test stands, automated for long-duration impacts, emissions, customer safety, etc.


SOUTHWEST GAS


ASSOCIATION OF HOME

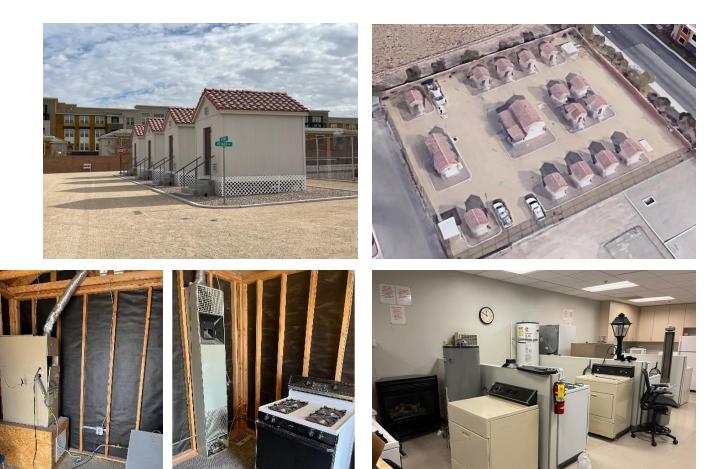
Based at a Southwest Gas mock neighborhood, GTI is working with a multidisciplinary team to expand on field research/best practices for utility blending & customer safety

New Mexico Hydrogen Blending

- In 2021-2022, New Mexico Gas Company and GTI Energy, tested a variety of appliances utilizing a 5% hydrogen blend. There was minimal deviation when comparing the baseline 100% natural gas to the 5% blended natural gas.
- In 2023, NMGC and GTI Energy increased the hydrogen blend tests to 10% and 15% hydrogen from 5%. The same tests were conducted, and similar results were achieved.
- In 2024, 20% H2 blend test were conducted
 - 3 Huts with 9 appliances were tested on NG and up to 20% hydrogen blends
 - Flame characteristics, CO/NOx emissions, water boiling efficiencies, etc. were compared and no significant difference was observed
 - 25% hydrogen blend test is being scheduled

Normalized NOx Emissions

25


Nevada Hydrogen Blending

Automated Test Stands:

- <u>Central Warm Air Furnaces</u>
 - Auto = Four
 - Manual = Two
- Wall Furnaces
 - Auto = Two
- <u>Storage Water Heater</u>
 - Auto = Four
 - Manual = Two
- Decorative Gas Lighting
 - Auto (Continuous)

Manual Test Stands:

- <u>IR/Ventless Heater (Two products)</u>
- Indoor Cooking/Ventless Hearth (2 + 1)
- <u>Dryers & Direct Vent Hearth (2 + 1)</u>
- <u>Outdoor Appliances (Two grill / two heater)</u>

Utah Hydrogen Blending

- In 2023, GTI Energy and Dominion Energy initiated the hydrogen blending pilot in the city of Delta (~2000 residents) and conducted baseline testing on 8 appliances and 7 gas sampling locations
- In Dec 2023, the electrolyzer (up to 43 kg/day of H2) was commissioned and started generating and blending hydrogen (< 5 vol%) into the city of Delta
- In March 2024, a long-term monitoring hydrogen sensor was installed at the pipeline system in the Delta High School District
- Future plans
 - Post hydrogen blending tests (appliances testing and gas quality checking) will be conducted in 2024
 - Electrolyzer performance and blending parameters will be monitored remotely in 2024 and 2025

Appliances Testing:

Gas Quality Testing:

Minnesota Hydrogen Blending

- In 2021, CenterPoint Energy successfully sought passage of the Natural Gas Innovation Act, a landmark new energy law in Minnesota that will allow the utility to invest further in innovative clean energy resources and technologies to reduce emissions.
- In June 2022, CenterPoint Energy announced that its green hydrogen project in Minneapolis was operational. The project uses renewable electricity to safely split hydrogen from water, and the zero-carbon hydrogen is then blended at low concentrations with natural gas in the utility's local distribution system.
- The project's 1MW electrolyzer is powered by renewable electricity and can produce up to 432 kg H2/day, using approximately two gallons of water per minute. The water is sourced from the municipal water supply and highly purified before it enters the hydrogen production system.

Content

- GTI Energy Introduction
- Hydrogen Blending Overview
- GTI Energy Projects Introduction
 - Lab Appliances Studies
 - Field Appliances Studies
- Summary

Summary

- There is an increasing attention (funding) on hydrogen demonstrations from both government and private sectors
- Federal hydrogen hubs are at the end of negotiation stage, and local hydrogen hubs are at different stages (training facility, neighborhood demonstration, city gas grid blending, etc.)
- NOx emission regulations has been a driving factor for combustion technology advancement and stricter regulations will be seen/adopted
- More reliable (high efficiency, low emissions, fuel-flexible, etc.) end-use equipment are in demand

More information

https://www.dominion energy.com/ourstories/hydrogenblending-delta-ut Henderson Nevada

https://www.swgas.com/en/ news/swgas-announcesgroundbreaking-hydrogenblending-pilot-program Minneapolis Minnesota

https://www.spglobal.com/market intelligence/en/newsinsights/latest-newsheadlines/centerpoint-outlinesrng-hydrogen-pilots-in-1st-minngas-innovation-plan-76363662 Ohio, Pennsylvania, etc.

https://www.gti.energy/hy drogen-technology-center/

Acknowledgements:

Ryan Kerr

Director, Emerging Technologies GTI Energy rkerr@gti.energy www.gti.energy