ET Summit 2024

Presented by

Heat Pump Performance in California:

Fuel-Fired Water Heating Applications

Madeline Talebi

Energy Engineer

ICF

solutions that transform

ET Summit 2024

Project Collaborators

<u>ICF</u>

Steven Long, P.E. Director of Engineering (West)

Alfredo Gutierrez, P.E. Engineering Manager

Madeline Talebi Energy Engineer

Alex Fridlyand, Ph.D., P.E. Senior Program Manager

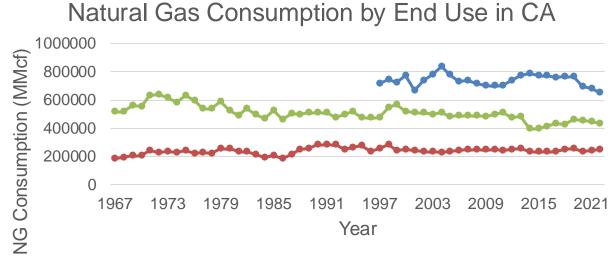
GTI Energy

Jason LaFleur Senior Manager

Alejandro Baez Guada Principal Engineer

Lee Van Dixhorn Senior Engineer

Ari Katz Senior Engineer


3

Agenda

- Gas Absorption Heat Pumps (GAHP) in California
- Equipment Commissioning/Test Plan
- Steady State Performance Experimental Data
- Load-Based (Transient) Performance Experimental Data
- EnergyPlus Modeling
- Next Steps
- Key Takeaways and Future Studies

California on Emissions Control

• Water heating is the largest end-use of natural gas in California

---Industrial Consumption

ET Summit 2024

- --- Deliveries to Commercial Consumers (inclduing Vehicle Fuel)
- ----Residential Consumption

California Bills & Legislation
SB 1477 (Building Decarbonization/Space Heating/Water Heating)
California Long Term EE Strategic Plan (CLTEESP)
AB 758 (Comprehensive EE in Existing Buildings Law)

 Focus sector: Multifamily (commercial) low-rise (5 stories or less)

US Energy Information Administration. "Natural Gas Consumption by End Use." https://www.eia.gov/dnav/ng/ng_cons_sum_dcu_SCA_a.htm

Objectives

- Improve low uptake at the sector level
 - Primarily as it relates to the commercial sector
- Improve low uptake at the technology level
- Technology performance in a controlled environment
 - Equipment commissioning
 - Steady state evaluation
 - Part Load (Transient) evaluation
- Develop performance mapping curves
- Contribute to EnergyPlus modeling data

Equipment Installation and Commissioning

• Robur GAHP-A system

Variable	Tolerance
Flow Rate [GPM]	±2.0%
Outside Air Temperature (OAT) [°F]	±1.0°F
Return Temperature (RT) [°F]	±1.0°F
Supply Temperature [°F]	±1.0°F
Firing Rate (Energy Input) [kBtu/h]	±2.0%
Heating Output [kBtu/h]	±2.0%

Robur. "Installation, use and maintenance manual" (2020).

Target Conditions – Steady State

• Robur GAHP-A system

ET Summit 2024

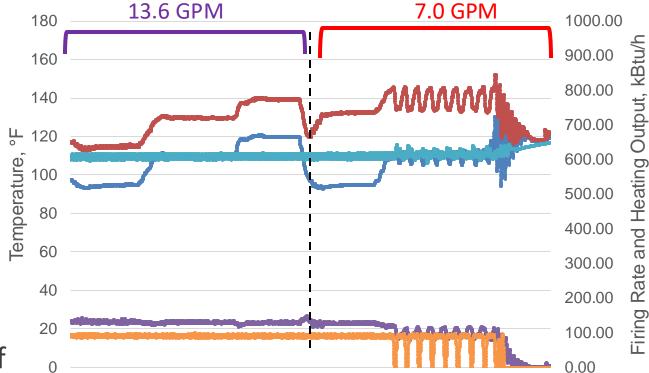
Variable	Testing Range	Number of Points within Testing Range
Flow Rate [GPM]	13.6 GPM & 7.0 GPM	2
Outside Air Temperature (OAT) [°F]	0°F-110°F	10
Return Temperature (RT) [°F]	95°F-120°F	3
Propylene Glycol [vol%]	35 vol%	1

Robur. "Installation, use and maintenance manual" (2020).

Target Conditions – Part Load

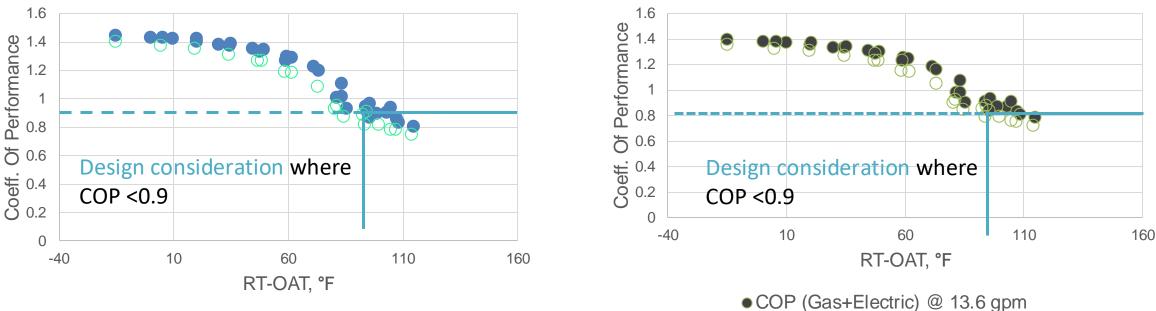
• Robur GAHP-A system

ET Summit 2024


Robur.	"Installation	use and	Imaintenance	manual"	(2020).
11000011	mocanacion		1110111001101100	manaan	(2020).

Variable	Testing Range	Number of Points within Testing Range
Flow Rate [GPM]	13.6 GPM & 7.0 GPM	2
Outside Air Temperature (OAT) [°F]	0°F-110°F	10
Return Temperature (RT) [°F]	95°F-120°F	3
Propylene Glycol [vol%]	35 vol%	1
ON Runtime [hr.]	0.1-0.9 hr.	6
OFF Time [hr.]	0.2-1.0 hr.	3

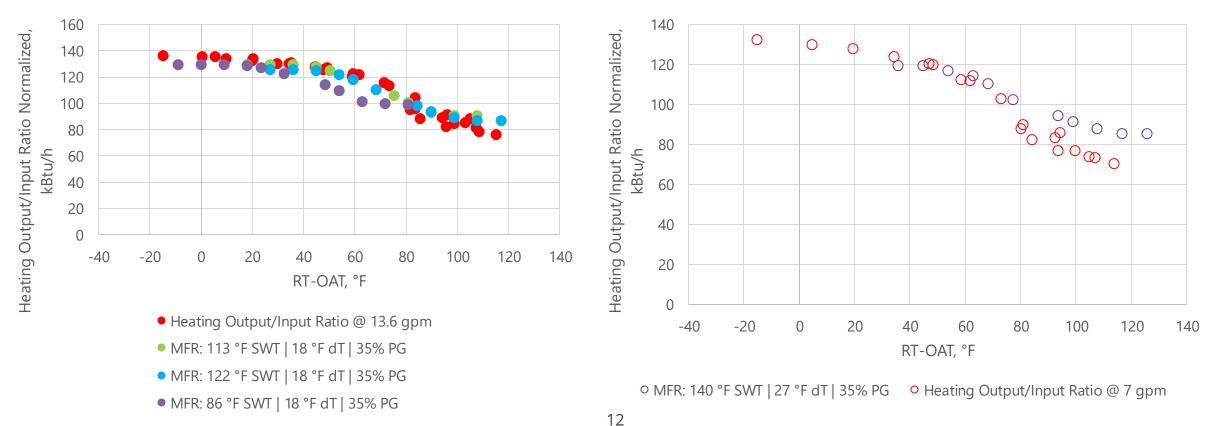
Steady State Performance Mapping


Target Conditions		
Outside Air		Return
Temperatur	Glycol Flow	Temperature
e (OAT), °F	Rate, GPM	(RT), °F
		95
	13.6	110
110		120
<u>110</u>		95
	7.0	110
		120

- Timeseries ~ 6 hours
- Oscillations (short cycling) begin @ RT of 110°F
 - Supply temperature exceeds max @ ~140°F at low flowrate contributes to short cycling
 - Operate according to application

- -Heating Loop Return Temp, °F
- -Heating Loop Supply Temp, °F
- -Outdoor Ambient Temp, °F
- ----Heating Output (1-min mov avg), kBtu/h
- -Firing Rate @ 1040 Btu/cF (1-min mov avg), kBtu/h

Steady State Performance Mapping

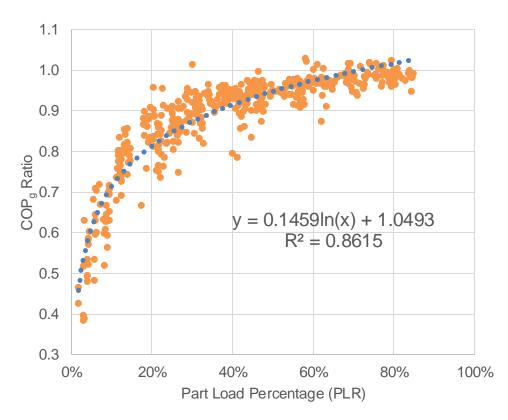

• COP (Gas-Only) @ 13.6 gpm (Gas-Only) @ 7 gpm • COP (Gas+Electric) @ 13.6 gpn

○COP (Gas+Electric) @ 7 gpm

- Side by side comparison for COP (Gas-Only) & COP (Gas+Electric)
 - Electric energy has small impact
 - *Short cycling data excluded
- COP behavior is contingent on (ambient) site conditions and return temperatures
 - Optimal at high ambient and low return temperatures

Steady State Performance Mapping

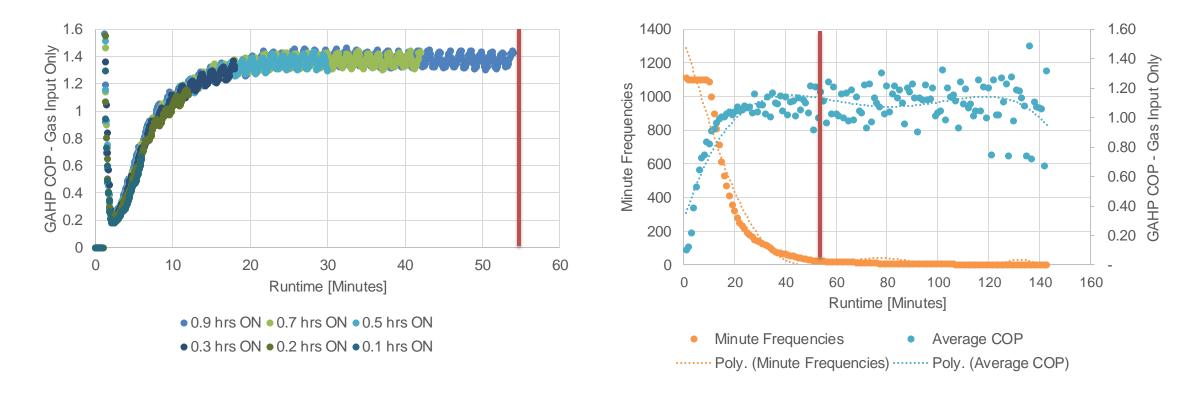
Red dots illustrate experimental data compared against manufacturer's data



- Overlap: close alignment between experimental and manufacturer data

Load-Based Performance Mapping

- Steady state experimental data = max capacity when calculating PLR
 - COP Ratio (derate): efficiency relative to the load
- Data used to develop correction factors for part load (cycling) performance
- Limitations in logarithmic trendline, therefore, tabulated


PLR	Values
1%	2.250
5%	1.700
10%	1.450
15%	1.250
20%	1.150
30%	1.070
50%	1.035
75%	1.020
100%	1.000

ETCC ENERGY TRANSITION COORDINATING COUNCIL

Field Test Comparison (Preliminary)

- Lab Data [left] compared against preliminary field data [right]
 - COP steady state reached in ~20 minutes

EnergyPlus Modeling Integration

- **Objective:** forecast...
- (1) Energy Consumption
- (2) Utility Bills
- (3) Greenhouse Gas Emissions
- <u>Targeted audience</u>:
- (1) California Policymakers
- (2) Program Designers
- (3) Software Developers
- (4) Manufacturers

Energy Plus

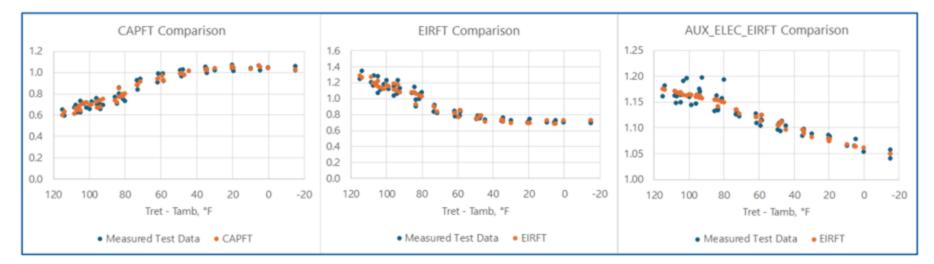
EnergyPlus Modeling Integration

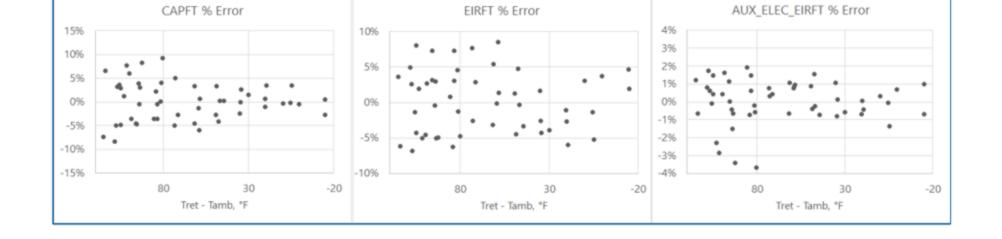
- Modeling parameters developed and plotted with experimental data
 - Modeling parameters can be predicted within ±5%
- Key parameters (simplified below):
 - Heating Capacity = Rated Capacity x CAPFT

CAPFT = correction factor based on ambient and return temperature

– Gas Use = Load x EIRFT x EIRFPLR x EIRDEFROST

EIRFT = correction factor based on ambient and return temperature


EIRFPLR = correction factor for cycling (part load)


EIRDEFROST = correction factor for defrost

ET Summit 2024

EnergyPlus Modeling: Correlation Comparison

Correlation between measured (experimental) data and calculated correction factor

% Error

Guada, Alejandro; Van Dixhorn, Lee; Fridlyand, Alex; Katz, Ari. "Robur GAHP A Performance Mapping." GTI Energy, 2023.

Recommendations

Key Takeaways

- Robur GAHP-A closely aligns with manufacturer's published data
- Data suggests to proceed according to application when operating unit at low flowrate (7.0 GPM)
- Normalized data suggest experimental data is sufficient for modeling integration (±6% error)

Future Studies

- National Renewable Energy Laboratory (NREL) large scale modeling for EnergyPlus performance curve integration
- Hydrogen blend testing and performance curve development
- Additional "market-ready" GAHP experimental testing for EnergyPlus modeling integration

This project was conducted through the ICF implemented, SoCalGas administered California Statewide Gas Emerging Technologies Program.

The project report can be found on cagastech.com

For more information, contact get@caenergyprograms.com

Madeline Talebi

Energy Engineer ICF madeline.Talebi@icf.com LinkedIn

solutions that transform

