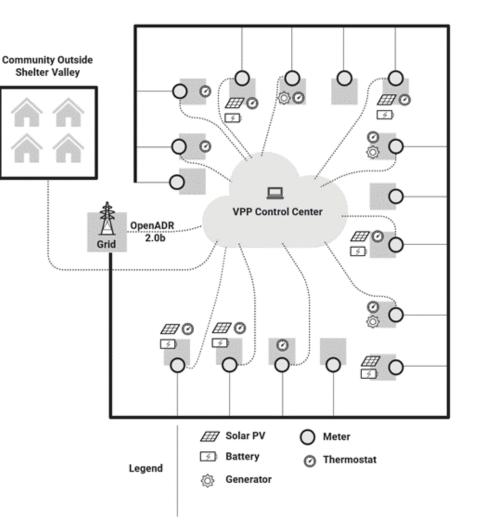
Presented by

Virtual Power Plant Project

Jeff Barnes

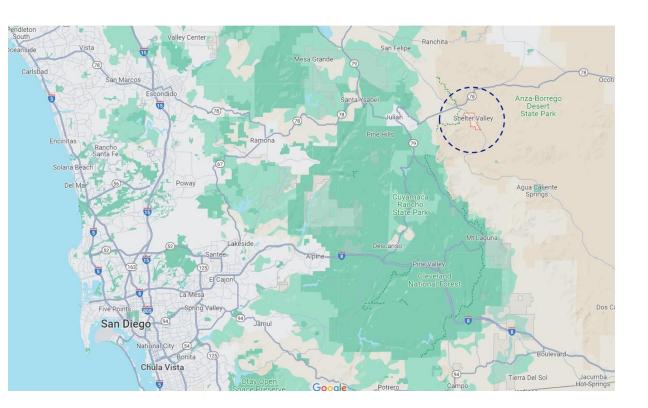
Emerging Technologies Project Manager San Diego Gas & Electric®


Virtual Power Plant Project Summary

- SDG&E[®]'s Virtual Power Plant (VPP) project evaluated the control, dispatch, and realtime signaling of behind-the-meter resources installed throughout a vulnerable community in its service territory.
- This project was unique because of its use of multiple end-use devices and different technology providers, including thermostats, well water controllers, water heater controllers and battery storage.

What is a Virtual Power Plant (VPP)?

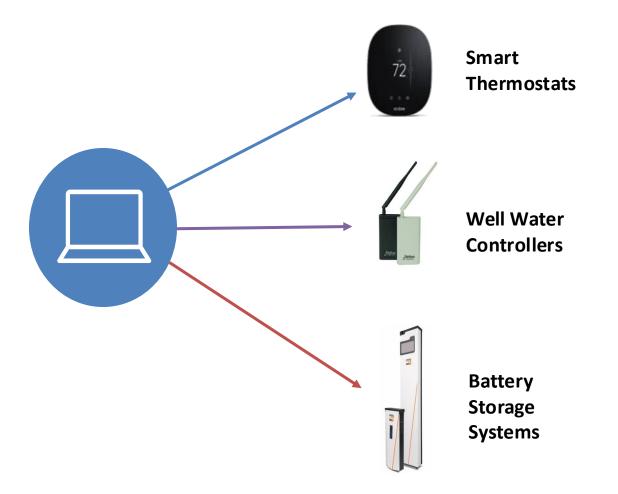
A VPP is a network of distributed energy resources (DERs) at customer sites all working together as a single "virtual" power plant that can be signaled to provide reliable power during grid needs.



VPP Overview

- Location: Shelter Valley, a remote community in East San Diego County that is prone to outages and Public Safety Power Shutoffs (PSPS)
- **Objective:** To strengthen community resilience, electric energy reliability, and emergency preparedness
- Focus: Evaluated control, dispatch and real-time signaling of behindthe-meter resources on a single circuit

~212

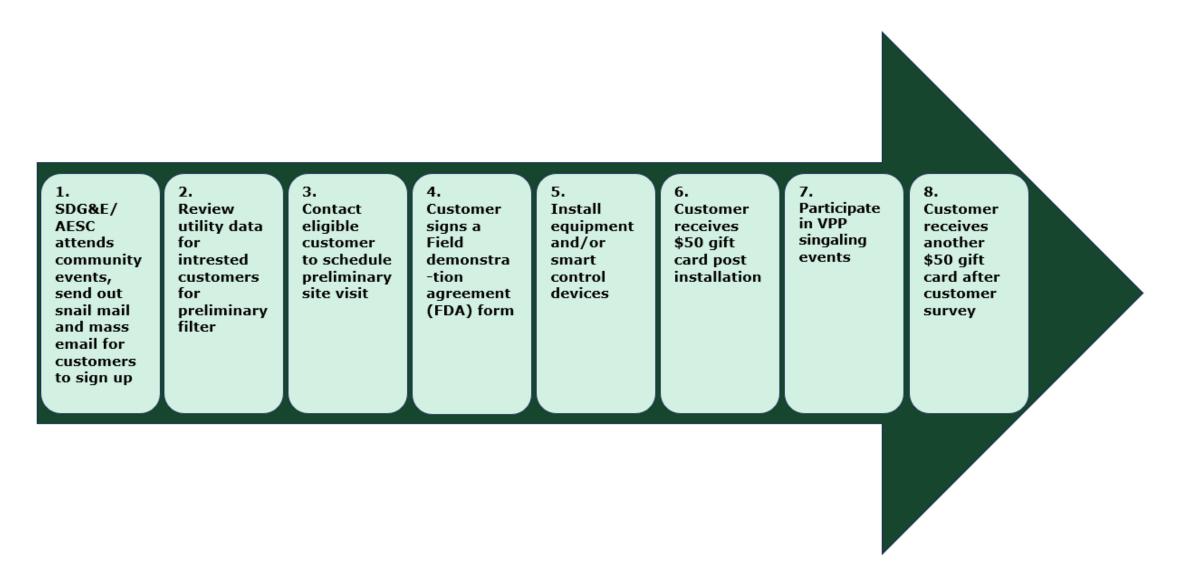


Solar Customers ~40

Source: Google Map

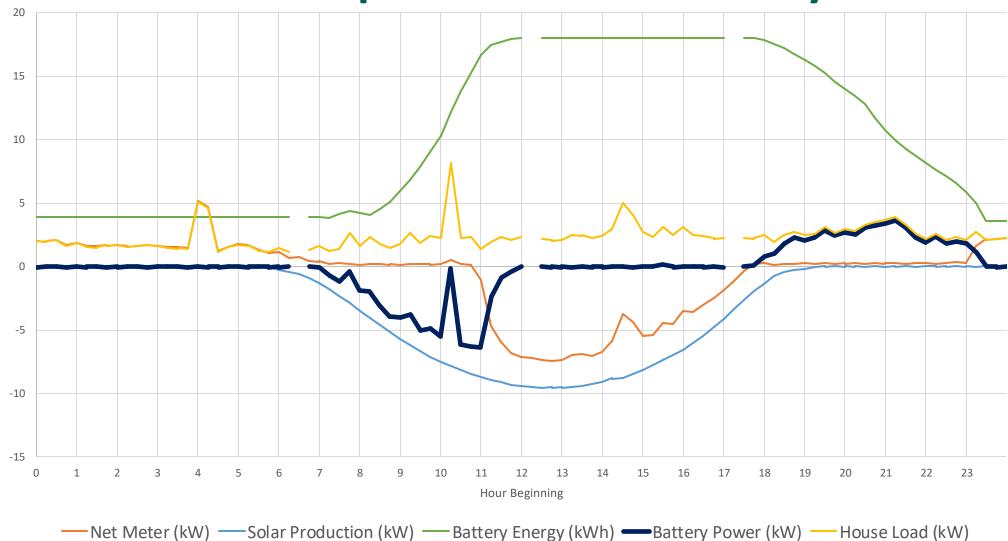
VPP Resource Mix

- Multiple end uses and different technology providers
- Resource mix included smart thermostats, well water pump controllers, and 18 kWh battery storage systems
- Central control platform manages cloud-based signaling of devices simultaneously or at pre-defined intervals

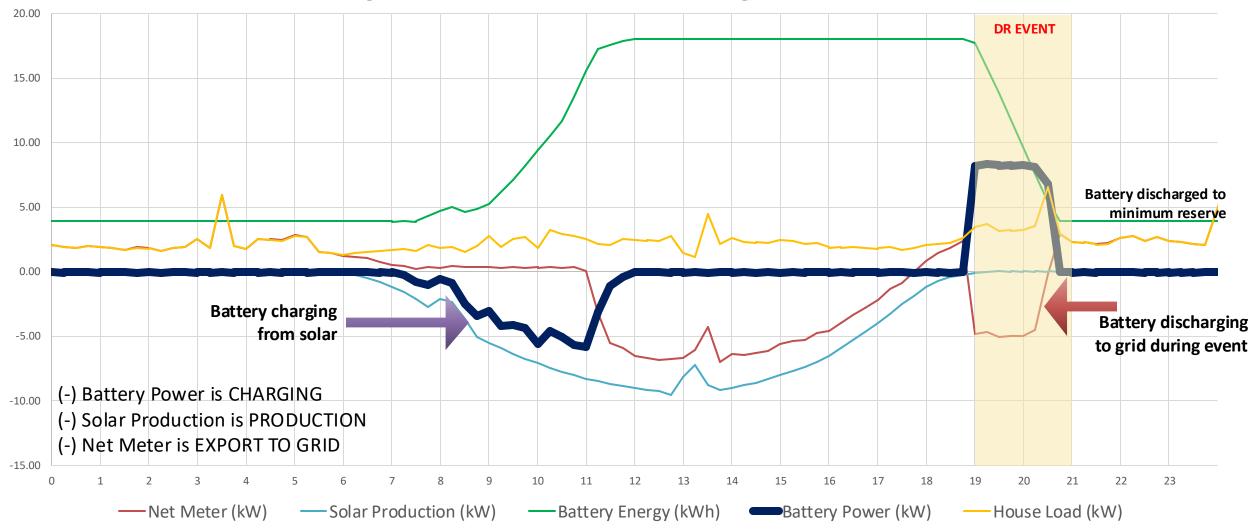


Communications by Technology/Site

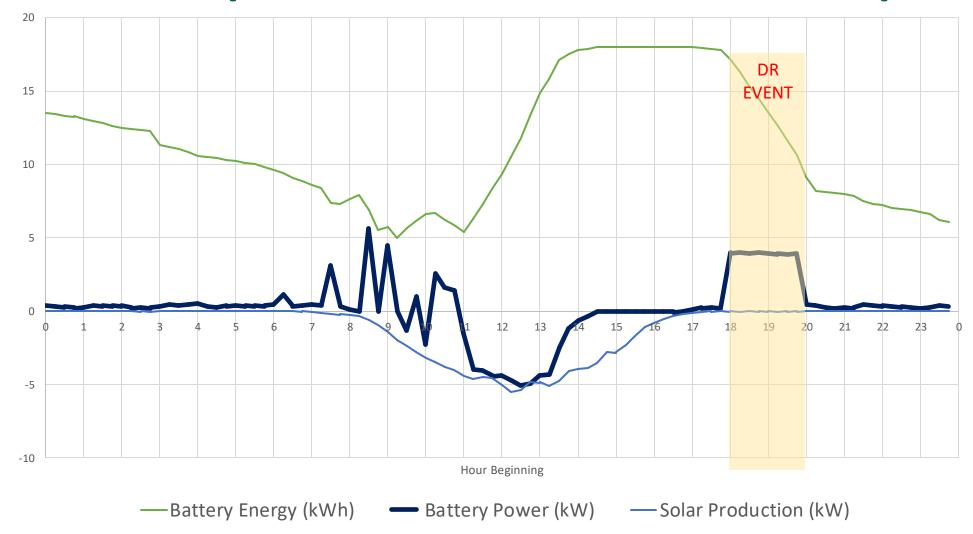
SITE ID	PARTICIPATING EQUIPMENT MEANS OF COMMUNICATION		
Site01	Battery	Router/Cell Card	
Site02	Battery	Customer Wi-Fi/ Cell Card	
	Well pump controller	Customer Wi-Fi	
Site03	Battery	Customer Wi-Fi/ Cell Card	
	Thermostats (2)	Customer Wi-Fi	
Site04	Battery	Customer Wi-Fi/ Cell Card	
Site05	Battery	Customer Wi-Fi/ Cell Card	
Site06_Community Facility	Battery (2)	Cell Card	
	Well pump controller	Customer Wi-Fi	
Site07	Well pump controller	Customer Wi-Fi	
	Thermostat	Customer Wi-Fi	
Site08	Thermostat	Router / Cradlepoint	
	Well pump controller	Router / Cradlepoint	
Site09	Well pump controller Customer Wi-Fi		



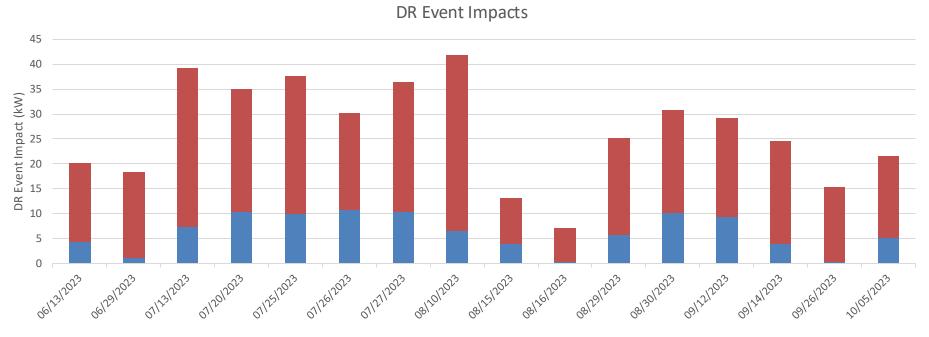
VPP Project Journey



VPP Sample Site Non-Event Day



VPP Sample Site - Event Day Performance



VPP Sample Site – Sustained Event Example

VPP Net Meter Impacts

■ Non-Residential Impacts ■ Residential Impacts

	Average Residential Baseline Load (kW)	Average Residential Demand Reduction (KW)		Average Non- residential Demand Reduction (kW)	Average Combined Baseline Load (KW)	
2-Hour DR Events	13.5	22.2	0.4	6.8	13.9	29.0
4-Hour DR Events	7.8	8.0	0.6	2.1	8.4	10.1

Net Meter Baseline

Residential

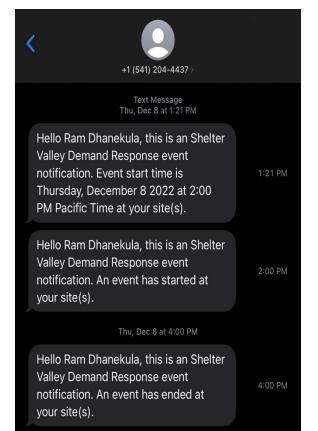
- 5 highest energy usage days within the 10 eligible weekdays immediately preceding the DR event.
- Adjustment hours were defined as two pre-event hours and two postevent hours, each with a two-hour buffer from the event.
- The Adjustment Ratio was capped at 1.4 (up) and 1/1.4 (down)

Non-Residential

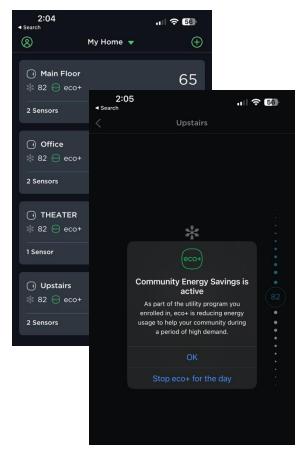
- 10 highest energy usage days within the 10 eligible weekdays immediately preceding the DR event.
- Adjustment hours were defined as three hours prior to the event period with a one-hour buffer.
- The Adjustment Ratio was capped at 1.2 (up) and 0.8 (down).

Battery Equipment: DR Event Signaling Summary

SITE ID	SITE 01	SITE 02	SITE 03	SITE 04	SITE 05	SITE 06 COMMUNITY CENTER	
EQUIPMENT SIGNALED	BATTERY	BATTERY	BATTERY	BATTERY	BATTERY	BATTERIES (2)	
6/13/2023 7:00 PM	Invalid Configuration*	100%	Connectivity Error	100%	100%	1/2 Batteries Offline	
6/29/2023 4:00 PM	100%	Connectivity Error	Connectivity Error	100%	100%	1/2 Batteries Offline	
7/13/2023 5:00 PM	100%	100%	Connectivity Error	100%	100%	100%	
7/20/2023 7:00 PM	100%	40%	Connectivity Error	100%	60%	100%	
7/25/2023 7:00 PM	100%	60%	Connectivity Error	100%	80%	100%	
7/26/2023 7:00 PM	100%	50%	Connectivity Error	100%	72%	100%	
7/27/2023 7:00 PM	100%	40%	Connectivity Error	100%	72%	100%	
8/10/2023 5:00 PM	100%	100%	100%	100%	100%	100%	
8/15/2023 5:00 PM	94%	88%	94%	100%	88%	97%	
8/16/2023 5:00 PM	94%	66%	100%	100%	66%	1/2 Batteries Offline	
8/29/2023 6:00 PM	Connectivity Error	Connectivity Error	100%	100%	100%	1/2 Batteries Offline	
8/30/2023 6:00 PM	Connectivity Error	Connectivity Error	100%	100%	100%	100%	
9/12/2023 6:00 PM	Connectivity Error	Connectivity Error	Connectivity Error	100%	100%	100%	
9/14/2023 5:00 PM	100%	Connectivity Error	Connectivity Error	100%	100%	1/2 Batteries Offline	
9/26/2023 6:00 PM	88%	Connectivity Error	Connectivity Error	100%	100%	Connectivity Error	
10/5/2023 6:00 PM	88%	Connectivity Error	Connectivity Error	100%	100%	1/2 Batteries Offline	


Thermostat: DR Event Signaling Summary

Event Start	Site 03 Thermostats (2)	Site 07 Thermostat	Site 08 Thermostat
6/13/2023 7:00 PM	1/2 overridden	Success	Connectivity Error
6/29/2023 4:00 PM	2/2 overridden	Success	Connectivity Error
7/13/2023 5:00 PM	1/2 overridden	Success	Connectivity Error
7/20/2023 7:00 PM	1/2 overridden	Success	Connectivity Error
7/25/2023 7:00 PM	1/2 overridden	Success	Connectivity Error
7/26/2023 7:00 PM	Success	Success	Connectivity Error
7/27/2023 7:00 PM	2/2 overridden	Success	Success
8/10/2023 5:00 PM	2/2 overridden	Success	Success
8/15/2023 5:00 PM	2/2 overridden	Connectivity Error	Success
8/16/2023 5:00 PM	2/2 overridden	Connectivity Error	Success
8/29/2023 6:00 PM	2/2 overridden	Overridden	Success
8/30/2023 6:00 PM	1/2 overridden	Success	Success
9/12/2023 6:00 PM	1/2 overridden	Success	Connectivity Error
9/14/2023 5:00 PM	Success	Success	Connectivity Error
9/26/2023 6:00 PM	Success	Success	Connectivity Error
10/5/2023 6:00 PM	Success	Success	Connectivity Error



VPP Event Notifications

Text (SMS) Messages

Thermostat Notification

Signaling Platform

The VPP was implemented using Generac's Concerto platform (https://www.generacgs.com/concerto/).
When DR events were executed, the platform provided information regarding any opt outs, as well as the time series power data for each event.

VPP Learnings & Experience

- Central platform successfully signaled devices
- Up to 57 kW discharged to grid during each event
- Communication with devices and customer engagement were critical to success
- Assess connectivity
- Modified resource mix (ex. water heater controllers) due to connection issues
- Some customer reservations about utility control of devices
- Consider solar warranties
- Plan for solar monitoring
- Set solar size thresholds

VPP Learnings & Experience

- Device communication challenges (Wi-Fi/cellular issues, device resets, geographic limitations, rodents)
- Emphasize connectivity responsibility
- Frequent battery hardware issues
- Initial opt-outs limited to thermostats
- 25+ VPP events scheduled (events were simulated prior to start of DR season; most events aligned with DR events)
- Robust data collection for comprehensive analysis (solar generation, battery charging/discharging, household demand in addition to net meter)
- Streamline customer agreements
- Diversify outreach channels

Customer Insights

- Customers with battery appreciated the supply of power to their home for few hours during outage and contributing to a reduction in their utility bills.
- Customer with thermostat said it's very user friendly, different settings, more functionality and shows current time on display. Customer said outside air temperature isn't accurate on the thermostat display.
- One customer expressed dissatisfaction with the placement of the battery at the front of her house. However, she understands that there might not have been any alternative options for installation.
- The majority of customers expressed their satisfaction with the battery installation.
- All customers decided to keep equipment installed at their sites.
- A customer has expressed interest in learning about the findings and results of this project.
- "We can use this equipment to maintain a place for people if the power goes off and keep the facility cool and hope we can provide food if needed for our community residents" -Community Leadership

Customer Insights

	Very dissatisfied	Somewhat dissatisfied	Somewhat satisfied	Very satisfied	Not sure	NA
Application / signup process	-	-	13%	75%	-	13%
Installation process	-	-	12%	88%	-	-
Contractor/ Installation Technician	-	-	-	100%	-	-
Your new battery	-	-	-	100%	-	-
Your new thermostat	-	-	-	100%	-	-
Your well pump controller	-	50%	25%	25%	-	-
Your control over the equipment during demand response (DR) signaling events (e.g., opt out)	-	13%	-	86%	-	-
Communication with SDG&E	-	-	25%	75%	-	-
Customer Service	-	-	-	100%	-	-

This project was funded by SDG&E's Demand Response - Emerging Technologies Program

For more information, contact Jeff Barnes at jbarnes@sdge.com.

The project report can be found at <u>https://etcc-ca.com/reports/virtual-power-plant-project</u>

Related Links

Media Release: <u>https://sdgetoday.com/news/sdge-pioneers-virtual-power-plant-help-ease-strain-power-grid-during-extreme-heat</u>

VPP Web Page: sdge.com/vpp

Virtual Power Plants, Explained: <u>https://sdgetoday.com/news/energy-101-</u> <u>virtual-power-plants-explained</u>

Jeff Barnes

SDGE[™]

Emerging Technologies Project Manager

San Diego Gas & Electric®

jbarnes@sdge.com

www.sdge.com