Beyond the Occupant Scapegoat

Part 1: Energy Performance of New Homes

Rick Chitwood
Chitwood Energy Management, Inc.
rick@chitwoodenergy.com

Modeled energy use for each Standards update Northern CA Inland Climate

Source: California Energy Commission

How Much Electricity Does A New California Home Use?

Source: California DSM Measurement Advisory Committee report

How Much Natural Gas Does A New California Home Use?

Source: California DSM Measurement Advisory Committee report

AC Sensible Capacity

Source: California Energy Commission report 500-2012-062

AC Sensible Capacity

Source: California Energy Commission report 500-2012-062 and Rick Chitwood

AC Sensible Capacity

Source: California Energy Commission report 500-2012-062, Rick Chitwood, and Energy Docs Home Performance

2005 Home – Heating Energy

Source: California Energy Commission project Stockton Research Houses and Rick Chitwood

Air Leakage Rates and Path

Source: California Energy Commission report 500-2012-062 and Rick Chitwood

Measured External Static Pressure

Source: California Energy Commission report 500-2012-062 and Rick Chitwood

Evaporator Coil Air Flow

Air Flow and Fan Watts

Source: California Energy Commission report 500-2012-062 and Rick Chitwood

Total Duct Leakage @ 25 Pa

Source: California Energy Commission report 500-2012-062 and Rick Chitwood

Spot 75.2 □F 80.9 67.6 \$FLIR

Comfort? ... in a 2014 home

Source: PG&E ET Project field observation

Comfort? ... in a two story zoned home

Start Test: (Lower Floor Only Calling)

Lower Floor Thermostat

68°F

Upper Floor Thermostat

69°F

Upper Floor Ceiling

68.4°F

At 15 Minutes: (Lower Floor Only Calling)

Lower Floor Thermostat 68°F

Upper Floor Thermostat 69°F

Upper Floor Ceiling 85.3°F

TestP每时dedieats与多Minutes:

October Gwer Floor Thermostatummit - Bey 7,20 Foccupant Scapegoat

Current Residential HVAC Design and Installation

Low	High	% difference
0.13 W/SF	0.92 W/SF	708%
9 Btu/SF	110 Btu/SF	1,222%
1,739 SF/ton	200 SF/ton	869%
0.12 ACH	1.92 ACH	
	0.13 W/SF 9 Btu/SF 1,739 SF/ton	0.13 W/SF 0.92 W/SF 9 Btu/SF 110 Btu/SF 1,739 SF/ton 200 SF/ton

Note: Average air infiltration is 0.25 ACH in new homes (2010 research, Wilcox, Proctor, Chitwood)

Source: California Energy Commission report 500-2012-062

Based on California Research

Average Grade

- Building Enclosure Tightness
- Comfort Delivered
- Air Handler Static Pressure
- HVAC Air Flow
- HVAC Fan Watts
- HVAC Duct Leakage
 F
- Delivered Cooling Performance F
- Delivered Heating Performance

Beyond the Occupant Scapegoat Part 2: Why Poor Performance (and how to fix

it)

Rick Chitwood
Chitwood Energy Management
rick@chitwoodenergy.com

Who's at Fault for this Poor Energy Performance?

- Government and their Energy Standards
- Home Builders
- Energy Feature <u>Subcontractors</u> and their Workers (especially HVAC subs)
- Home Owners

Who Do We Focus on to Improve Energy Performance?

- Government and their Energy Standards
- Home Builders
- Energy Feature <u>Subcontractors</u> and their Workers (especially HVAC subs)
- Home Owners

Government and their Energy Standards?

- Too much focus on: Licensing, bonding, certifications, HERS verification, and equipment efficiencies
- Standards are not performance based
- Standards are minimums not goals
- Too many believe:
 - homes perform as modeled
 - the energy code is too strict and expensive now
 - all homes perform the same (so only shop price)
 - just add solar to get to ZNE

☐ Home Builders?

- Shareholder focused corporate capitalism with no focus on the other stake holders:
 - workers
 - homeowners
 - the environment
- "Quality Control" not part of the construction process
- The lower the HVAC "bid" the more the shareholders profit

- Energy Feature <u>Subcontractors</u> and their Workers (especially HVAC subs)?
- Directly responsible for <u>poor</u> HVAC system performance
- Doing great at what their employer asks them to do;
 being low bidder, and meeting code minimums
- Equipment manufacturers' control the "performance" narrative (no focus on installation quality – it is all about the "box)
- HVAC workforce skill in extremely low
- Worker training not in the low bid

- Energy Feature Subcontractors and their Workers (especially HVAC subs)?
- "Quality Control" not part of the HVAC installation process
- Air conditioner efficiency losses add up:

Duct Leakage	7%	
Duct Conductive Losses		12%
Refrigerant Charge and Contamination	8%	
Low Air Flow (high latent removal)		14%
Equipment Oversizing	4%	
Room Air Delivery and Mixing	<u>5%</u>	
Total Loss	50%	

The un-learning curve is hard to overcome

Homeowners?

Homeowners have little impact on heating/cooling costs if the; energy standards, builders, and subcontractors do their job well.

To Move Forward and To Meet Our 2020 ZNE Goals We Must "Change the Paradigm"

- Deliver (and verify) true performance in all energy feature categories (especially HVAC)
- 2. Incentivize homes and systems that really perform (but nothing else)

Energy Feature Subcontractors Must

Incorporate True "Quality Control"

- Insulation Subcontractors
 - Blower Door test
 - IR Camera inspection
- HVAC Subcontractors
 - BTU's at the supply grilles compared performance tables
 - Record run time to confirm sizing
 - Duct leakage to outside less than 5 CFM₂₅
 - Fan watt draw less than 0.2 watts/CFM
 - Delivery velocities above 500 FPM

Certify/Verify all HVAC Systems that Deliver High Performance

- 1. First use certification program on <u>utility</u> <u>pilot programs</u>; ZNE, ET, & CAHP
- 2. Make Certification a <u>prescriptive</u> measure in the 2019 Standards
- 3. Certification a <u>mandatory measure</u> in 2022

Can we get technicians to do this job correctly 100% of the time? Yes! ...but only with 100% QC testing

