

# Program will start at 10:00 am ETCC QUARTERLY MEETING: CRUNCHING NUMBERS, SHRINKING MEGAWATTS: MAKING DATA CENTERS MORE ENERGY EFFICIENT

December 7, 2016 UC Davis, Activities and Recreation Center HOSTED BY: Sacramento Municipal Utilities District

Wifi: ucd-guest WIFI code: Browser pops up to have you create a guest account.

# Welcome, Safety and ETCC Updates

### **Jim Parks**

Program Manager | Sacramento Municipal Utility District





### WELCOME!

### Before we get started.... housekeeping and safety



## FOR OUR ONLINE MEETING PARTICIPANTS

- Quick logistics
  - Phone lines are muted
  - Please use question field to ask questions during Q&A or if any technical issues



# HOUSEKEEPING FOR ALL PARTICIPANTS

- Please turn off or silence your phone, and step outside for any non-program conversations
- Audio recording today's session
  Will be posted on <u>www.etcc-ca.com</u>
- Slides will be posted to
  <u>www.etcc-ca.com</u>
- Don't forget to fill out evaluations!



# SAFETY MESSAGE

- In the event of an emergency:
  - Earthquake
  - Fire
  - Other evacuation
- Meeting point
- 911
- CPR



### TODAY'S AGENDA

| 10:00 AM | Welcome, Safety & ETCC Updates                                                                      |  |
|----------|-----------------------------------------------------------------------------------------------------|--|
| 10:20 AM | The Big Picture Behind Crunching Big Data                                                           |  |
| 11:30 PM | LUNCH (provided)                                                                                    |  |
| 12:35 PM | Concurrent Sessions:<br>Enterprise Data Center Solutions<br>Server Closet and Server Room Solutions |  |
| 1:55 PM  | BREAK                                                                                               |  |
| 2:15 PM  | What's Next? The Future of Data Centers                                                             |  |
| 3:30 PM  | WRAP UP                                                                                             |  |



# EMERGING TECHNOLOGIES COORDINATING COUNCIL (ETCC)

The ETCC supports ETP efforts in the advancement of energy efficiency and demand response initiatives through its leadership, impact and influence in the emerging technology domain. It pursues this objective by strategically engaging with a wide range of external ET stakeholders and effectively and efficiently managing coordination among ETCC members.

### Members include:



















# EMERGING TECHNOLOGIES PROGRAM MISSION

"...to increase energy efficiency market demand and technology supply through evaluation of *emerging* and *underutilized* advanced technologies to increase customer savings..."





### ET PROGRAM DESIGN

Technology Development Support

Technology Assessment

- Provide resources to transform early-stage technologies / concepts into saleable products
- Develop forwardlooking product specifications
- Provide outreach to early-stage entrepreneurs, investors, and analysts (TRIO)

- •Evaluate performance claims
- •Generate energy savings and cost data required for regulatory approval of a new EE measures

### Technology Introduction Support

- •Conduct scaled field placements to foster market traction
- •Build demonstration showcases to create visibility / market awareness
- Conduct third-party solicitations using competitive bidding (TRIP solicitation)



### UPCOMING ETCC EVENTS

| Date                  | Event                           | Location & Host                                        |
|-----------------------|---------------------------------|--------------------------------------------------------|
| February 8, 2017      | Q1 Meeting: Commercial          | Energy Education Center,<br>Southern California Edison |
| April 19-21, 2017     | Emerging Technologies<br>Summit | Ontario Convention Center,<br>Ontario, California      |
| September 20,<br>2017 | Q3 Meeting: Industrial          | Bay Area, PG&E                                         |

To sign up for the ETCC Insight newsletter, check the box on the sign-in / registration sheet or sign up online at: <u>www.etcc-ca.com/subscribe</u>

Check the ETCC website for updates: <u>http://www.etcc-ca.com/events</u>



# THE BIG PICTURE BEHIND CRUNCHING BIG DATA

**Ryan Hammond**, Senior Energy Advisor, Commercial Services | Sacramento Municipal Utility District - *moderator* 

**Pierre Delforge**, Director of High Tech Sector Energy Efficiency, Energy & Transportation Program | Natural Resources Defense Council

**Arman Shehabi**, Research Scientist, Energy Technologies Area | Lawrence Berkeley National Laboratory

Ryan Hammond Senior Energy Advisor, Commercial Services | Sacramento Municipal Utility District



# **SMUD Custom Incentive Program**

### R. Ryan Hammond, P.E.

Crunching Numbers, Shrinking Megawatts: Energy Efficiency of Data Centers December 7<sup>th</sup>, 2016



Powering forward. Together.

# **Overview of Incentable Measures**

- Individual System Components
- Complete systems
- Controls upgrades
- Unique technologies



# **Incentive Structure Overview**

- Paid on energy (kWh) and demand (kW) savings
- Capped
  - kWh & kW savings
  - 30% of Project Cost
  - -\$150,000





# Data Center Humidifier Retrofit

- Existing System = Infrared
- Proposed System = Ultrasonic
- Incentive = \$100,000
- Annual energy savings = 1,100,000 kWh from humidifiers and an additional 350,000 kWh from reduced load on the chiller
- Annual bill savings = \$140,000







### Contact

# Custom Incentive Program R. Ryan Hammond, P.E. Senior Energy Advisor 916-732-5647 Ryan.Hammond@smud.org



Pierre Delforge Director of High Tech Sector Energy Efficiency, Energy & Transportation Program | Natural Resources Defense Council



### BIO



### PIERRE DELFORGE

NATURAL RESOURCES DEFENSE COUNCIL (2010-Present) IT industry (1989-2010)

Areas of focus:

- Information and Communications Technologies (ICT): Data centers, computers, game consoles...
- Plug loads, idle/standby
- Thermal decarbonization (heat pump space and water heating)
- Marathons...



### Data Center Energy by Type (2014)







### Data Center Efficiency Framework





Arman Shehabi Research Scientist, Energy Technologies Area | Lawrence Berkeley National Laboratory



## Arman Shehabi, Ph.D.

Research Scientist Energy Analysis & Environmental Impacts Division Lawrence Berkeley National Laboratory 1 Cyclotron Rd Building 90R2000 Berkeley, CA 94720 510-486-7818 ashehabi@lbl.gov





## Data Center Energy Research

### U.S. Data center energy usage

 Characterize growth and evolving ICT market

### Target the inefficiencies:

• Lots of closet clunkers & other poorly operated data centers

# Steer ICT towards greatest net energy benefits:



Indirect effects of ICT across other economic sectors

### Understand demand beyond 2020:

 Established efficiency measures to eventually hit upper limit, while computational/storage demand only increasing





### **DISCUSSION AND Q&A**

# THE BIG PICTURE BEHIND CRUNCHING BIG DATA

**Ryan Hammond**, Senior Energy Advisor, Commercial Services | Sacramento Municipal Utility District - *moderator* 

**Pierre Delforge**, Director of High Tech Sector Energy Efficiency, Energy & Transportation Program | Natural Resources Defense Council

**Arman Shahabi**, Research Scientist, Energy Technologies Area | Lawrence Berkeley National Laboratory

# LUNCH

# Program will resume at 12:35 pm

# SERVER CLOSETS – THIS ROOM ENTERPRISE DATA CENTERS – NEXT DOOR

### PLEASE FILL OUT EVALUATIONS!





# SERVER CLOSET AND SERVER ROOM SOLUTIONS

**Priscilla Johnson**, Evaluation Measurement & Verification | Pacific Gas & Electric - moderator

**Magnus Herrlin**, Program Manager, High-Tech Group | Lawrence Berkeley National Laboratory

**Bob Huang**, Senior Associate | Cadmus

Priscilla Johnson Evaluation Measurement & Verification | Pacific Gas & Electric



### Small Data Center Market Characterization CPUC ID: 2026

30

### Priscilla Johnson, Ph.D., LEED O+M Commercial/Water/Energy EM&V

ETCC Quarterly Meeting December 7, 2016















#### **Contracted Support**

# **CLEAResult**

Mark Bramfitt

QDI Strategies, Inc.





- US Data Centers projected to consume ~73 billion kWh in 2020 (LBNL, 2016)
- 99.2% of all servers reside in embedded data centers (NRDC, 2014)
- Enterprise Data Centers already utilize the most efficient equipment, practices and infrastructure
- Largest EE opportunity remains in Embedded Data Center space





- Older equipment, long life and The "Hodgepodge Effect" NO money, NO time to perform comprehensive upgrade Uptime and security are always key
- Energy efficiency is NOT a primary motivator





- Website Clearinghouse
- Prescriptive/Deemed Measures
- ESCO (Shared Savings / Audits)



- Embedded Data Centers are not going away
- Hybrid IT solutions (Cloud + EDC) have the highest potential
- Applications with high privacy or seasonal needs are things firms would keep on premises
- "Forklifting" or moving IT resources to the cloud does not yield savings for a company
- Redesigning and then moving to the cloud does yield large savings, but it requires a higher order skill set
- Once companies migrate to the cloud, they migrate and STAY there



Integrate Findings into PG&E 2017 Business and Implementation Plans

**Issue RFPs for 2017** 

Sustain engagement with supply chain to consider potential utility incentive products and programs aligned with study participant objectives and concerns


### **SUPPLEMENTAL SLIDES**



**Risks:** 

#### **Outcome: Website Clearinghouse**

#### **Purchase Process**





#### **Training/Programs**

- DCEP-facilitated audits
- Enhanced audits (e.g. thermal imaging)
- PG&E DC Plus (Airflow Mgmt Program) for data centers (DCIM)

#### Efficient servers

- Storage optimization
- Server virtualization (reactivate for EDCs)

#### Equipment

IT

- VFDs on CRACs/CRAHs
- Controls upgrades
- Efficient UPS
- Automated cooling



- Significant work to develop values & get approvals
  - Match utility specs to national standard
  - Incremental cost
- NTG (Free ridership) EE is not industry standard practice for EDCs
- Technology shifts are rapid
  - Need to support platforms that don't change
  - Updating deemed values
  - Achieving Persistence of savings



#### What is it?

- ESCO model for data centers
- "Data centers as a service"
- Need to standardize the model
- Utility-approved audit methodology
- Support savings calculations
- Leverage existing frameworks



#### **Risks**

- Requires further discussion with ESCOs and utilities
- Need to understand savings potential
- What about M&V? Persistence?
- Multi-tenant buildings won't work
- Split incentive barrier



- Midstream market best intervention point or "Reseller channel"
- **Understand day-to-day operations of EDCs**
- **New tech > Market identification**





#### **Embedded Data Center Market Map**



# Thank You

#### Priscilla Johnson, Ph.D., LEED O+M EM&V Commercial, Water/Energy, Data Centers 415-973-2401 pxjj@pge.com





Magnus Herrlin Program Manager, High-Tech Group | Lawrence Berkeley National Laboratory





# "Server Closets and Server Room Solutions" Panel

Magnus Herrlin, Ph.D. Lawrence Berkeley National Laboratory (LBNL) 510-486-6515 mkherrlin@lbl.gov

December 7, 2016

# **The Challenge**

- "Small data centers" are <5000 SF
- Houses 70%+ of all servers in data centers
- Majority of energy saving potential...
- ... but a number of barriers:
  - » Difficult to find (embedded)
  - » Difficult to engage
  - > Limited expertise
  - > Limited resources
  - > Limited savings for each individual data center.



# **Current Work at LBNL**

- Focus on saving energy in small data centers
- Focus on air management
- Survey of portable air management monitoring tools (2016)
- Demonstration project for the portable tools (2017)
- Developing "packages" of air management measures (2016)
- Demonstration project for the packages (2017)
- Utility rebate program based on deemed savings.









#### UNIVERSITY OF CALIFORNIA

# Bob Huang Senior Associate | Cadmus



# **Robert Huang**

- Leading EPA ENERGY STAR effort to promote EDC efficiency
- Characterized the EDC market for number of utility clients











# **Embedded Data Center Free Cooling**

- EDC with 6.6 kW IT load
- Fitted with air side economizer
- Saves 2 kW of compressor load when free cooling
- Supply and return fans use 0.8 kW

CADMUS







# Hot Aisle Return to Underfloor Plenum









# **DISCUSSION AND Q&A**

# SERVER CLOSET AND SERVER ROOM SOLUTIONS

**Priscilla Johnson**, Evaluation Measurement & Verification | Pacific Gas & Electric - moderator

**Magnus Herrlin**, Program Manager, High-Tech Group | Lawrence Berkeley National Laboratory

**Bob Huang**, Senior Associate | Cadmus



# ENTERPRISE DATA CENTER SOLUTIONS

Mary Medeiros McEnroe, Public Benefit Program Manager | Silicon Valley Power - moderator

Nissim Hamu, Design Manager | Intel Corporation

Fred Rebarber, Manager, Technical Relations, North America | Vertiv

Mary Medeiros McEnroe Public Benefit Program Manager | Silicon Valley Power







Mary Medeiros McEnroe Public Benefits Program Manager Silicon Valley Power <u>mmedeiros@svpower.com</u>

- Manages utility energy efficiency, renewable energy, R&D and low income programs
- 22 years in the utility industry
- Working with data centers for 18 years



# Data Centers in Santa Clara

- 19 square mile service territory
- 30+ large data centers
- 39% of electric load is data centers...and growing!
  Excludes server rooms/closets
- Programs targeted at energy efficiency in data centers
- R&D effort on liquid cooling in data centers
  - Partnering with University of Washington



# Nissim Hamu Design Manager | Intel Corporation



# **ETCC QUARTERLY MEETING**

Location – Davis, CA

Wednesday, December 7<sup>th</sup> | 9:00 AM – 3:30 PM

Chiller-less Cooling

Nissim Hamu, Intel Electronics

# Nissim Hamu





- B. Tech degree in Electrical Engineering, SCE College of Engineering, Israel
- Married + 3, Live in Chandler AZ
- 8 years Experience in Sustaining Electrical Systems in Intel Fabs
- 10 Years Experience in Design and Project Management in Intel
- Last 3 years D2P3 Data Center Design Manager in Intel Santa Clara, CA
- Email: nissim.hamu@intel.com
- Cell: 1-480-3818077



About 75% of North-America can use free cooling if the maximum inlet temperature is raised to 35°C (95 °F). In Europe, the situation is even better: With outside air temperatures <95F/35C & Dew point <71F/21C More of the world becomes available for airside economizers





#### **Intel Data Center Designs**

#### 2016 CS **Excellence** Awards



World class designs feasible with very different cooling methods



#### Free Air- Air Side Economizer





#### **Evaporative Cooling Wet Side Economizer**

#### **Chillers-less cooling**





#### 30MW DC: Traditional space ~330k ksf

- Intel new design required 33K
- **Large Electrical savings**



Segregate cooling tower water from data center cooling coils



Plate heat



#### Designs and techniques to increase data center efficiency

#### Vision: Maintain Intel's position as being in the top three for most energy efficient DC in the industry

#### **Air Segregation**

- No Raised Metal Floor
- Air segregation
- Chimney cabinets

#### **Air Management**

- Flooded supply air design
- Variable Frequency Drives
- Airflow rate change from 160-200CFM /kW to 80-108CFM /kW

#### **Cooling management**

- Evaporative cooling Wet side economization
- Free cooling Outside air Dry side economization
- Raise Return Air Temperature
- Raise Supply Air Temperature (80 to 95F)
- Raise Return Chilled Water Temperature

#### **Power Loss and Electrical Efficiency**

- 12KV 415/240 VAC systems (SS, TR's, Busways, racks...)
- High efficiency Transformers
- Utility as second source

#### **Room Design Efficiency**

- 1100 watts /sf/ft. Power and cooling density
- Multi Tier room design
- Densification







#### How will we measure: Use The Green Grid PUE Power Usage Effectiveness





# Thank You!

Intel<sup>®</sup> Data Center Manager

#### ABATIGO ABT – closed loop adiabatic liquid cooler System for Hydraulics Cooling

The **Abatigo ABT** is a dry-cooling modular system with high performance copper/aluminum finned pack heat exchangers and ventilated with axial fans. It cools the water by using the cooling capacity of ambient air. The system works as a "CLOSED CIRCUIT".

| Parameter                             | Open Circuit<br>(CT's) | Adiabatic             |
|---------------------------------------|------------------------|-----------------------|
| Pipe Loop Complexity                  | Double Loop            | Single Loop           |
| PCW Fluid                             | Water                  | 25 % Glycol           |
| Major Equipment<br>Height w/Supports  | 35 ft.                 | 26 ft.                |
| Pump Quantity                         | 3 PCW<br>3 CW          | 3 PCW<br>1 Glycol Mix |
| HX quantity                           | 3 HX's                 | None Required         |
| Sand Filter                           | CW                     | None Required         |
| Energy Consumed<br>(kWh/yr)           | 5,669,542              | 3,532,608             |
| Energy Consumed<br>cost/yr)           | \$566,954              | \$353,260             |
| Water Consumed<br>(gal/yr)            | 79,365,600             | 3,740,311             |
| Water Discharged to<br>sewer (gal/yr) | 8,724,960              | Near 0                |
| Water In/Out (cost/yr)                | \$341,272              | \$16,083              |
| Equipment cost                        |                        | <25%                  |
| Energy and water<br>costs             | \$908,226              | \$369,343             |
| Energy consumed<br>(kWh/yr per W)     | 0.27                   | 0.2                   |
| Water consumed<br>(gal/yr per W)      | 4.24                   | 0.22                  |
| PUE                                   | 1.043                  | 1.032                 |
| Normalized Footprint<br>(sf/Kw)       | 0.3-0.4                | 0.9-1.6               |





20 MW Cooling Systems

#### **Close Coupled Cooling**

#### Modular Build

10ft X 24ft Increments from center cold aisle to of center cold aisle

#### Server Racking

Sub 20in wide in 30u incremer 30u, 60u and 90u elevation

#### Fit-Up Module

Insert provides on site and offsite compute device fit

#### Close Coupled Cooling Coil provides 330kW cooling per twelve 60u racks

# Above Hot Aisle Cooling Coll Hot aisle endcap





#### **Closed Coupled Cooling**



Fred Rebarber Manager, Technical Relations, North America | Vertiv



#### ENTERPRISE PANEL

Fred Rebarber

Technical Relations Manager, North America

Vertiv, Thermal Management,

December 7, 2016

ETCC Meeting, Davis, CA


### ..."Big Data" Interactions Push Content Closer To the Edge and Closer To Users...



Source: Gartner, Blue Canyon



### **Market Trends In Large Data Centers**

- **High Efficiency Low PUE**
- SLA's still written around 66–75°F (19-24°C) Supply Temps / Conservative Humidity Ranges
- **Scalable Deployments**
- Larger building blocks
- **Minimal Water usage**
- Low Max kW/Peak Power
- Greater use of containment
- Maximize rack count / External deployments





### Thermal Management System Keys to a Successful Data Center Design

|                                                          | Resiliency<br>SLA | OP EX Cost   | CAP EX Cost  | Why?                                                                                                                                                    | How !!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------|-------------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Containment enabling<br>Higher Operating<br>Temperatures | ~                 | ~            | ~            | Reliable control of supply air temperatures   PUE 0% to 35%   Unit capacities 0nit count   Lower Max kW => more Power allocated to IT                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Economization                                            |                   | ~            | $\checkmark$ | Sustainable control of operating costs<br>Mechanical refrigeration PUE 15% te %<br>Improved life (MTBF)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Control                                                  | ~                 | ~            | ~            | Networking for optimization & fault tolerance<br>Adjust/Optimize the cooling to the IT load<br>One control platform for the <u>whole critical space</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Intelligent Monitoring<br>(DCIM)                         | $\checkmark$      | $\checkmark$ | $\checkmark$ | Means to <u>verify</u> optimal performance<br><u>Anticipating</u> / predicting critical issues<br><u>Planning</u> change and growth                     | Autor of the state |
| Scalable Design                                          |                   | ~            | $\checkmark$ | Deploy latest technology as developed Image: Comparison of the ployment   Time value of money, reduced excess capacity Speed of deployment              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



### **Economization Technology Available**

Pumped Refrigerant – Turns off compressors and pumps refrigerant around to reject the heat outdoors

Evaporative – Indirect and Direct – uses water evaporation to lower the temperature of the air for better heat transfer

**Outside Air – replaces mechanical refrigeration** 

Chilled Water Economization – uses cool cooling tower water to cooling the chilled water loop to reject the heat

**Climate impacts the available hours for economization modes** 



### **Department of Energy (DOE)**

Requires manufacturers to test and register on DOE web site Liebert submitted SCOPs to be in compliance by January 1, 2016 www.regulations.doe.gov/certification-data/



Requirement currently applies only to DX units in Upflow & Downflow configurations



### **Pumped Refrigerant Economization – Liebert DSE**

#### Larger building blocks 50 to 165 kW for sites up to 5 MW

Effective on Modular build outs Quick Deployment Global Deployments

### **Reliable and Low Maintenance Operation**

No Water usage or treatment No Outside Air or damper maintenance Instant automatic economizer changeover Approved as a prescriptive alternative to

### California CEC Title 24 for DC







### **Indirect Evaporative AHU - Liebert EFC**



VERTIV.

### Liebert EFC400 Wet + DX Trim Operation





## **DISCUSSION AND Q&A**

# ENTERPRISE DATA CENTER SOLUTIONS

Mary Medeiros McEnroe, Public Benefit Program Manager | Silicon Valley Power - moderator

Nissim Hamu, Design Manager | Intel Corporation

Fred Rebarber, Manager, Technical Relations, North America | Vertiv

# BREAK

# Program will resume at 2:15 pm

# PLEASE FILL OUT EVALUATIONS!





# WHAT'S NEXT? THE FUTURE OF DATA CENTERS

Mark Modera, Director, Western Cooling Efficiency Center | UC Davis - moderator

Mukesh Khattar, Technical Executive, Data Centers | EPRI

Jeff Stein, Principal | Taylor Engineering

Jim Hanna, Director, Datacenter Sustainability | Microsoft

Mark Modera Director, Western Cooling Efficiency Center | UC Davis



# Mukesh Khattar Technical Executive, Data Centers | EPRI





# Jeff Stein Principal | Taylor Engineering

Jim Hanna Director, Datacenter Sustainability | Microsoft





# DISCUSSION AND Q&A

# WHAT'S NEXT? THE FUTURE OF DATA CENTERS

Mark Modera, Director, Western Cooling Efficiency Center | UC Davis - moderator

Mukesh Khattar, Technical Executive, Data Centers | EPRI

Jeff Stein, Principal | Taylor Engineering

Jim Hanna, Director, Datacenter Sustainability | Microsoft

# SESSION WRAP-UP

# PLEASE FILL OUT EVALUATIONS!





### UPCOMING ETCC EVENTS

| Date                  | Event                           | Location & Host                                        |
|-----------------------|---------------------------------|--------------------------------------------------------|
| February 8, 2017      | Q1 Meeting: Commercial          | Energy Education Center,<br>Southern California Edison |
| April 19-21, 2017     | Emerging Technologies<br>Summit | Ontario Convention Center,<br>Ontario, California      |
| September 20,<br>2017 | Q3 Meeting: Industrial          | Bay Area, PG&E                                         |

To sign up for the ETCC Insight newsletter, check the box on the sign-in / registration sheet or sign up online at: <u>www.etcc-ca.com/subscribe</u>

Check the ETCC website for updates: <u>http://www.etcc-ca.com/events</u>